Skip to main content

The Formation of Scrapie-Associated Prion Protein In Vitro

  • Chapter
Bovine Spongiform Encephalopathy

Abstract

The formation of the abnormal protease-resistant, amyloidogenic isoform of PrP (PrP-res) appears to play a central role in the pathogenesis of scrapie and other transmissible spongiform encephalopathies (TSEs). Thus, it is important to understand the process by which the normal, protease-sensitive PrP (PrP-sen) is converted to the protease-resistant state. To define the cellular and molecular details of this process and how it might be inhibited, we have performed in vitro studies using both scrapie-infected tissue culture cells and cell-free reactions. This chapter summarizes the recent results from these studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Race RE, Fadness LH, Chesebro B. Characterization of scrapie infection in mouse neuroblastoma cells. J Gen Virol 1987;68:1391–1399.

    Article  PubMed  Google Scholar 

  2. Caughey B. Cellular metabolism of mormal and scrapie-associated forms of PrP. Semin Virol 1991;2:189–196.

    CAS  Google Scholar 

  3. Caughey B. In vitro expression and biosynthesis of prion protein. Curr Top Microbiol Immunol 1991;172:931–107.

    Google Scholar 

  4. Borchelt DR, Scott M, Taraboulos A, Stahl N, Prusiner SB. Scrapie and cellular prion porteins differ in the kinetics of synthesis and topology in cultured cells. J Cell Biol 1990;110:743–752.

    Article  PubMed  CAS  Google Scholar 

  5. Caughey B, Raymond GJ. The scrapie-associated form of PrP is made from a cell surface precursor that is both protease-and phospholipase-sensitive. J Biol Chem 1991;266:18217–18223.

    PubMed  CAS  Google Scholar 

  6. Caughey B, Neary K, Buller R, Ernst D, Perry L, Chesebro B. Normal and scrapie-associated forms of prion protein differ in their sensitivities to phospholipase and proteases in intact neuroblastoma cells. J Virol 1990;64:1093–1101.

    PubMed  CAS  Google Scholar 

  7. Stahl N, Borchelt DR, Prusiner SB. Differential release of cellular and scrapie prion proteins from cellular membranes by phosphatidylinositol-specific phospholipase C. Biochemistry 1990;29:5405–5412.

    Article  PubMed  CAS  Google Scholar 

  8. Safar J, Ceroni M, Gajdusek DC, Gibbs CJ Jr. Differences in the membrane interaction of scrapie amyloid precursor proteins in normal and scrapie-or Creutzfeldt-Jakob disease-infected brains. J Infect Dis 1991;163:488–494.

    Article  PubMed  CAS  Google Scholar 

  9. Caughey B, Raymond GJ, Ernst D, Race RE. N-termainal truncation of the scrapie-associated form of PrP by lysosomal protease(s). Implications regarding the site of conversion of PrP to the protease-resistant state. J Virol 1991;65:6597–6603.

    PubMed  CAS  Google Scholar 

  10. Taraboulos A, Raeber AJ, Borchelt DR, Serban D, Prusiner SB. Synthesis and trafficking of prion proteins in cultured cells. Mol Biol Cell 1992;3:851–863.

    PubMed  CAS  Google Scholar 

  11. Borchelt DR, Taraboulos A, Prusiner SB. Evidence for synthesis of scrapie prion protein in the endocytic pathway. J Biol Chem 1992;267:16188–16199.

    PubMed  CAS  Google Scholar 

  12. McKinley MP, Taraboulos A, Kenaga L, et al. Ultrastructural localization of scrapie prion proteins in cytoplasmic vesicles of infected cultured cells. Lab Invest 1991;65:622–630.

    PubMed  CAS  Google Scholar 

  13. Glenner GG. Amyloid deposits and amyloidosis. The Beta-fibrillosa (second of two prats). N Engl J Med 1980;302:1333–1343.

    Article  PubMed  CAS  Google Scholar 

  14. Prusiner SB, McKinley MP, Bowman KA, et al. Scrapie prions aggregate to form amyloid-like birefringent rods. Cell 1983;35:349–358.

    Article  PubMed  CAS  Google Scholar 

  15. Caughey B, Race RE. Potent inhibition of scrapie-associated PrP accumulation by Congo red. J Neurochem 1992;59:768–771.

    Article  PubMed  CAS  Google Scholar 

  16. Caughey B, Ernst D, Race RE. Congo red inhibition of scrapie agent replication. J Virol 1993;67:6270–6272.

    PubMed  CAS  Google Scholar 

  17. Ehlers B, Rudolf R, Diringer H. The reticuloendothelial system in scrapie pathogenesis. J Gen Virol 1984;65:423–428.

    Article  PubMed  Google Scholar 

  18. Ehlers B, Diringer H. Dextran sulphate 500 delays and prevents mouse scrapie by impairment of agent replication in spleen. J Gen Virol 1984;65:1325–1330.

    Article  PubMed  CAS  Google Scholar 

  19. Farquhar CF, Dickinson AG. Prolongation of scrapie incubation period by an injection of dextran sulphate 500 within the month before or after infection. J Gen Virol 1986;67:463–473.

    Article  PubMed  CAS  Google Scholar 

  20. Kimberlin RH, Walker CA. Suppression of scrapie infection in mice by heteropolyanion 23, dextran sulfate, and some other polyanions. Antimicrob Agents Chemother 1986;30:409–413.

    PubMed  CAS  Google Scholar 

  21. Diringer H, Ehlers B. Chemoprophylaxis of scrapie in mice. J Gen Virol 1991;72:457–460.

    Article  PubMed  CAS  Google Scholar 

  22. Ladogana A, Casaccia P, Ingrosso L, et al. Suplphate polyanions prolong the incubation period of scrapie-infected hamsters. J Gen Virol 1992;73:661–665.

    Article  PubMed  CAS  Google Scholar 

  23. Caughey B, Raymond GJ. Sulfated polyanion inhibition of scrapie-associated PrP accumulation in cultured cells. J Virol 1993;67:643–650.

    PubMed  CAS  Google Scholar 

  24. Snow AD, Kisilevsky R, Willmer J, Prusiner SB, DeArmond SJ. Sulfated glycosaminoglycans in amyloid plaques of prion diseases. Acta Neuropathol 1989;77:337–342.

    Article  PubMed  CAS  Google Scholar 

  25. Snow AD, Wight TN, Nochlin D, et al. Immunolocalization of heparan sulfate proteoglycans to the prion protein amyloid plaques of Gerstmann-Straussler syndrome, Creutzfeldt-Jakob disease and scrapie. Lab Invest 1990;63: 601–611.

    PubMed  CAS  Google Scholar 

  26. Guiroy DC, Yanagihara R, Gajdusek DC. Localization of amyloidogenic proteins and sulfated glycosaminoglycans in nontransmissible and transmissible cerebral amyloidoses. Acta Neuropathol 1991;82:87–92.

    Article  PubMed  CAS  Google Scholar 

  27. Narindrasorasak S, Lowery D, Gonzalez-DeWhitt P, Poorman RA, Greengerg B, Kisilevsky R. High affinity interactions between the Alzheimer’s beta-amyloid precursor proteins and the basement membrane form of heparan sulfate proteoglycan. J Biol Chem 1991;266:12878–12883.

    PubMed  CAS  Google Scholar 

  28. Guiroy DC, Gajdusek DC. Fibril-derived amyloid enhancing factor as nucleating agents in Alzheimer’s disease and transmissible virus dementia. Disc Neurosci 1989;5:69–73.

    Google Scholar 

  29. Caughey B. Scrapie associated PrP accumulation and its prevention. Insights from cell culture. Br Med Bull 1993;49:860–872.

    PubMed  CAS  Google Scholar 

  30. Caughey B, Brown K, Raymond GJ, Katzenstien GE, Thresher W. Binding of the protease-sensitive form of PrP (prion protein) to sulfated glycosaminoglycan and Congo red. J Virol 1994;68:2135–2141.

    PubMed  CAS  Google Scholar 

  31. Kimberlin RH, Walker CA. The antiviral compound HPA-23 can prevent scrapie when administered at the time of infection. Arch Virol 1983;78:9–18.

    Article  PubMed  CAS  Google Scholar 

  32. Ingrosso L, Ladogana A, Pocchiari M. Congo red prolongs the incubation period in scrapie-infected hamsters. J Virol 1995;69:506–508.

    PubMed  CAS  Google Scholar 

  33. Snow AD, Sekiguchi R, Nochlin D, et al. An important role of heparan sulfate proteoglycan (perlecan) in a model system for the depostion and persistence of fibrillar A-beta-amyloid in rat brain. Neuron 1994;12:219–234.

    Article  PubMed  CAS  Google Scholar 

  34. Kisilevsky R, Lemieux LJ, Fraser PE, Kong X, Hultin PG, Szarek WA. Arresting amyloidosis in vivo using small-molecule anionic sulphonates or sulphates. implications for Alzheimer’s disease. Nature Med 1995;1:143–148.

    Article  PubMed  CAS  Google Scholar 

  35. Priola SA, Caughey B, Race RE, Chesebro B. Heterologous PrP molecules interfere with accumulation of protease-resistant PrP in scrapie-infected murine neuroblastoma cells. J Virol 1994;68:4873–4878.

    PubMed  CAS  Google Scholar 

  36. Dickinson AG, Outram GW. The scrapie replication-site hypothesis and its implications for pathogenesis. In: Prusiner SB, Hadlow WJ, eds. Slow transmissible diseases of the nervous system. New York: Academic Press, 1979:13–31.

    Google Scholar 

  37. Hope J, Morton LJD, Farquhar CF, Multhaup G, Beyreuther K, Kimberlin RH. The major polypeptide of scrapie-associated fibrils (SAF) has the same size, charge distribution and N-terminal protein sequence as predicted for the normal brain protein (PrP). EMBO J 1986;5:2591–2597.

    PubMed  CAS  Google Scholar 

  38. Jarrett JT, Lansbury PT Jr. Seeding “one-dimensional crystallization” of amyloid. A pathogenic mechanism in Alzheimer’s disease and scrapie? Cell 1993;73:1055–1058.

    Article  PubMed  CAS  Google Scholar 

  39. Bolton DC, Bendheim PE. A modified host protein model of scrapie. In Bock G, Marsh J, eds. Novel infectious agents and the central nervous system. Chichester, UK: John Wiley & Sons, 1988:164–181.

    Google Scholar 

  40. Priola SA, Caughey B, Wehrly K, Chesebro B. A 60-kDa pion potein (PrP) with properties of both the normal and scrapie-associated forms of PrP. J Biol Chem 1995;270:3299–3305.

    Article  PubMed  CAS  Google Scholar 

  41. Kocisko DA, Come JH, Priola SA, et al. Cell-free formation of protease-resistant prion protein. Nature 1994;370:471–474.

    Article  PubMed  CAS  Google Scholar 

  42. Kocisko DA, Priola SA, Raymond GJ, Chesebro B, Lansbury PT Jr, Caughey B. Species specificity in the cell-free conversion of prion protein to protease-resistant forms. A model for the scrapie species barrier. Proc Natl Acad Sci USA 1995;92:3923–3927.

    Article  PubMed  CAS  Google Scholar 

  43. Bolton DC, Seligman SJ, Bablanian G, et al. Molecular location of a species specific epitope on the hamster scrapie agent protein. J Virol 1991;65:3667–3675.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Caughey, B. et al. (1996). The Formation of Scrapie-Associated Prion Protein In Vitro. In: Gibbs, C.J. (eds) Bovine Spongiform Encephalopathy. Serono Symposia USA Norwell, Massachusetts. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2406-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2406-8_22

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7527-5

  • Online ISBN: 978-1-4612-2406-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics