Amyloidosis: The Key to the Epidemiology and Pathogenesis of Transmissible Spongiform Encephalopathies

  • Heino Diringer
  • Michael Beekes
  • Elizabeth Baldauf
  • Sven Cassens
  • Muhsin Özel
Part of the Serono Symposia USA Norwell, Massachusetts book series (SERONOSYMP)


Numerous results have made it very clear that TSEs are pathogenetically closely related to the many nontransmissible amyloidoses (1). These results include the discovery of a disease-specific amyloid fibril (SAF) (2–4), its protein constituent (5–11), and of the gene coding for the amyloid protein precursor (12–18). Further findings provide evidence for the association of familial forms of human TSE (see Chapter 1) and of the susceptibility of sheep breeds to scrapie (19) with specific mutations in the amyloid-coding gene. This gene has been shown to be identical with the sinc gene in mice (20–23) or the sip gene in sheep (24, 25) [some groups prefer to call it the prion gene (20, 21, 23)]. In the absence of this gene, neither amyloidosis, infectivity, nor clinical symptoms develop (27, 28). As the amyloidogenic protein is preferentially located at the surface of neurons (29–31), it becomes clear why these cells are particularly vulnerable to infection and why TSEs present as degenerative diseases of the brain.


Prion Protein Bovine Spongiform Encephalopathy Viral Nucleic Acid Transmissible Spongiform Encephalopathy Indirect Transmission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Diringer H. Hidden amyloidoses. Exp Clin Immunogenet 1992;9:212–229.PubMedGoogle Scholar
  2. 2.
    Merz PA, Somerville RA, Wisniewski HM, Iqbal K. Abnormal fibrils from scrapie-infected brain. Acta Neuropathol 1981;54:63–74.PubMedCrossRefGoogle Scholar
  3. 3.
    Merz PA, Somerville RA, Wisniewski HM, Manuelidis L, Manuelidis EE. Scrapie-associated fibrils in Creutzfeldt-Jakob disease. Nature 1983;306:474–476.PubMedCrossRefGoogle Scholar
  4. 4.
    Merz PA, Rohwer RG, Kascsak R, et al. Infection-specific particle from the unconventional slow virus diseases. Science 1984;225:437–440.PubMedCrossRefGoogle Scholar
  5. 5.
    Bolton DC, McKinley MP, Prusiner SB. Identification of a protein that purifies with the scrapie prion. Science 1982;218:1309–1311.PubMedCrossRefGoogle Scholar
  6. 6.
    McKinley MP, Bolton DC, Prusiner SB. A protease-resistant protein is a structural component of the scrapie prion. Cell 1983;35:57–62.PubMedCrossRefGoogle Scholar
  7. 7.
    Diringer H, Gelderblom H, Hilmert H, Ozel M, Edelbluth C, Kimberlin RH. Scrapie infectivity, fibrils and low molecular weight protein. Nature 1983; 306:476–478.PubMedCrossRefGoogle Scholar
  8. 8.
    Barry RA, McKinley MP, Bendheim PE, Lewis GK, DeArmond SJ, Prusiner SB. Antibodies to the scrapie protein decorate prion rods. J Immunol 1985; 135:603–613.PubMedGoogle Scholar
  9. 9.
    DeArmond SJ, McKinley MP, Barry RA, Braunfeld MB, McColloch JR, Prusiner SB. Identification of prion amyloid filaments in scrapie-infected brain. Cell 1985;41:221–235.PubMedCrossRefGoogle Scholar
  10. 10.
    Merz PA, Kascsak RJ, Rubenstein R, Carp RI, Wisniewski HM. Antisera to scrapie-associated fibril protein and prion protein decorate scrapie-associated fibrils. J Virol 1987;61:42–49.PubMedGoogle Scholar
  11. 11.
    Wiley CA, Burrola PG, Buchmeier MJ, et al. Immuno-gold localization of prion filaments in scrapie-infected hamster brains. Lab Invest 1987;57:646–656.PubMedGoogle Scholar
  12. 12.
    Chesebro B, Race R, Wehrly K, et al. Identification of scrapie prion protein-specific mRNA in scrapie-infected and uninfected brain. Nature 1985;315: 331–333.PubMedCrossRefGoogle Scholar
  13. 13.
    Oesch B, Westaway D, Waelchli M, et al. A cellular gene encodes scrapie PrP 27–30 protein. Cell 1985;40:735–746.PubMedCrossRefGoogle Scholar
  14. 14.
    Basier K, Oesch B, Scott M, et al. Scrapie and cellular PrP isoforms are encoded by the same chromosomal gene. Cell 1986;46:417–428.CrossRefGoogle Scholar
  15. 15.
    Locht C, Chesebro B, Race R, Keith JM. Molecular cloning and complete sequence of prion protein cDNA from mouse brain infected with the scrapie agent. Proc Natl Acad Sci USA 1986;83:6372–6376.PubMedCrossRefGoogle Scholar
  16. 16.
    Robakis NK, Sawh PR, Wolfe GC, Rubenstein R, Carp RI, Innis MA. Isolation of a cDNA clone encoding the leader peptide of prion protein and expression of the homologous gene in various tissues. Proc Natl Acad Sci USA 1986;83: 6377–6381.PubMedCrossRefGoogle Scholar
  17. 17.
    Westaway D, Prusiner SB. Conservation of the cellular gene encoding the scrapie prion protein. Nucleic Acids Res 1986;14:2035–2044.PubMedCrossRefGoogle Scholar
  18. 18.
    Liao YC, Lebo RV, Clawson GA, Smuckler EA. Human prion protein cDNA: molecular cloning, chromosomal mapping, and biological implications. Science 1986;233:364–367.PubMedCrossRefGoogle Scholar
  19. 19.
    Hunter N, Foster JD, Hope J. Natural scrapie in British sheep: breeds, ages and PrP gene polymorphisms. Vet Rec 1992;130:389–392.PubMedCrossRefGoogle Scholar
  20. 20.
    Carlson GA, Kingsbury DT, Goodman PA, et al. Linkage of prion protein and scrapie incubation time genes. Cell 1986;46:503–511.PubMedCrossRefGoogle Scholar
  21. 21.
    Westaway D, Goodman PA, Mirenda CA, McKinley MP, Carlson GA, Prusiner SB. Distinct prion proteins in short and long scrapie incubation period mice. Cell 1987;51:651–662.PubMedCrossRefGoogle Scholar
  22. 22.
    Hunter N, Hope J, McConnell I, Dickinson AG. Linkage of the scrapie-associated fibril protein (PrP) gene and Sinc using congenic mice and restriction fragment length polymorphism analysis. J Gen Virol 1987;68:2711–2716.PubMedCrossRefGoogle Scholar
  23. 23.
    Scott M, Foster D, Mirenda C, et al. Transgenic mice expressing hamster prion protein produce species-specific scrapie infectivity and amyloid plaques. Cell 1989;59:847–857.PubMedCrossRefGoogle Scholar
  24. 24.
    Hunter N, Foster JD, Dickinson AG, Hope J. Linkage of the gene for the scrapie-associated fibril protein (PrP) to the Sip gene in Cheviot sheep. Vet Rec 1989;124:364–366.PubMedCrossRefGoogle Scholar
  25. 25.
    Foster JD, Hunter N. Partial dominance of the sA allele of the Sip gene for controlling experimental scrapie. Vet Rec 1991;128:548–549.PubMedCrossRefGoogle Scholar
  26. 26.
    Goldmann W, Hunter N, Benson G, Foster JD, Hope J. Different scrapie-associated fibril proteins (PrP) are encoded by lines of sheep selected for different alleles of the Sip gene. J Gen Virol 1991;72:2411–2417.PubMedCrossRefGoogle Scholar
  27. 27.
    Bueeler H, Fischer M, Lang Y, et al. Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein [see comments]. Nature 1992;356:577–582.CrossRefGoogle Scholar
  28. 28.
    Bueeler H, Aguzzi A, Sailer A, et al. Mice devoid of PrP are resistant to scrapie. Cell 1993;73:1339–1347.CrossRefGoogle Scholar
  29. 29.
    Stahl N, Borchelt DR, Hsiao K, Prusiner SB. Scrapie prion protein contains a phosphatidylinositol glycolipid. Cell 1987;51:229–240.PubMedCrossRefGoogle Scholar
  30. 30.
    Stahl N, Baldwin MA, Burlingame AL, Prusiner SB. Identification of glycoinositol phospholipid linked and truncated forms of the scrapie prion protein. Biochemistry 1990;29:8879–8884.PubMedCrossRefGoogle Scholar
  31. 31.
    Stahl N, Borchelt DR, Prusiner SB. Differential release of cellular and scrapie prion proteins from cellular membranes by phosphatidylinositol-specific phospholipase C. Biochemistry 1990;29:5405–5412.PubMedCrossRefGoogle Scholar
  32. 32.
    Masters CL, Gajdusek DC, Gibbs CJ Jr. The familial occurrence of Creutzfeldt-Jakob disease and Alzheimer’s disease. Brain 1981;104:535–558.PubMedCrossRefGoogle Scholar
  33. 33.
    Hunter N. Natural transmission and genetic control of susceptibility of sheep to scrapie. Curr Topics Microbilo Immunol 1991;172:165–180.Google Scholar
  34. 34.
    Bruce ME, McConnell I, Fraser H, Dickinson AG. The disease characteristics of different strains of scrapie in Sinc congenic mouse lines: implications for the nature of the agent and host control of pathogenesis. J Gen Virol 1991;72: 595–603.PubMedCrossRefGoogle Scholar
  35. 35.
    Eklund CM, Hadlow WJ, Kennedy RC. Some properties of the scrapie agent and its behavior in mice. Proc Soc Exp Biol Med 1963;112:974–979.Google Scholar
  36. 36.
    Gibbs CJ. Search for infectious etiology in chronic and subacute degenerative diseases of the central nervous system. Curr Topics Microbiol Immunol 1967; 40:44–58.Google Scholar
  37. 37.
    Tateishi J, Koga M, Sato Y, Mori R. Properties of the transmissible agent derived from chronic spongiform encephalopathy. Ann Neurol 1980; 7:390–391.PubMedCrossRefGoogle Scholar
  38. 38.
    Diringer H, Kimberlin RH. Infectious scrapie agent is apparently not as small as recent claims suggest. Biosci Rep 1983;3:563–568.PubMedCrossRefGoogle Scholar
  39. 39.
    Dickinson AG, Outram GW. The scrapie replication-site hypothesis and its implications on pathogenesis. In: Prusiner SB, Hadlow WJ, eds. Slow transmissible diseases of the nervous system, vol 2. New York: Academic Press, 1979: 13–31.Google Scholar
  40. 40.
    Diringer H, Beekes M, Oberdieck U. The nature of the scrapie agent: the virus theory. Ann NY Acad Sci 1994;724:246–258.PubMedCrossRefGoogle Scholar
  41. 41.
    British Ministry of Agriculture, Fisheries and Food. Bovine spongiform encephalopathy in Great Britain. Appendix 1: Chronology of events. In: A progress report (November 1994). British Ministry of Agriculture Fisheries and Food. Surbton, Surrey: MAFF 1994.Google Scholar
  42. 42.
    Pattison IH, Millson GC. Experimental transmission of scrapie to goats and sheep by the oral route. J Comp Pathol 1961;71:171–176.Google Scholar
  43. 43.
    Matthews JD. Ataxias and transmissible agents. Lancet 1967;1:851.CrossRefGoogle Scholar
  44. 44.
    Dickinson AG, Young GB, Stamp JT, Renwick CC. An analysis of natural scrapie in Suffolk sheep. Heredity 1965;20:485–503.PubMedCrossRefGoogle Scholar
  45. 45.
    Hourrigan J, Klingsporn A, Clark WW, deCamp M. Epidemiology of scrapie in the United States. In: Prusiner SB, Hadlow WJ, eds. Slow transmissible diseases of the nervous system, vol 1. New York: Academic Press, 1979:331–356.Google Scholar
  46. 46.
    Kirkwood JK, Cunningham AA, Wells GAH, Wilesmith JW, Barnett JEF. Spongiform encephalopathy in a herd of greater kudu (Tragelaphus strepsiceros): epidemiological observations. Vet Rec 1993;133:360–364.PubMedCrossRefGoogle Scholar
  47. 47.
    Pattison IH, Hoare MN, Jebbett JN, Watson WA. Further observations on the production of scrapie in sheep by oral dosing with foetal membranes from scrapie-affected sheep. Br Vet J 1974;130:55–57.Google Scholar
  48. 48.
    Pattison IH, Hoare MN, Jebbett JN, Watson WA. Spread of scrapie to sheep and goats by oral dosing with foetal membranes from scrapie-affected sheep. Vet Rec 1972;90:465–468.PubMedCrossRefGoogle Scholar
  49. 49.
    Kimberlin RH. Modified pathogenesis of scrapie at first intracerebral passage from sheep to mice (P 59-1). In: IXth International Congress of Virology. Abstracts. Norwich. Page Bros, 1993:318.Google Scholar
  50. 50.
    Sarradet M. Un cas de tremblante sur un boeuf. Rev Veterinaire 1883;7: 310–312.Google Scholar
  51. 51.
    Cutlip RC, Miller JM, Race RE, et al. Intracerebral transmission of scrapie to cattle. J Infect Dis 1994;169:814–820.PubMedCrossRefGoogle Scholar
  52. 52.
    Bruce ME, Chree A, McConnell J, Foster J, Pearson G, Fraser H. Agent strain variation in BSE and Scrapie. In: Bradley R, Marchant B, eds. Transmissible spongiform encephalopathies: Proceedings of a consultation on BSE with the scientific veterinary committee of the commission of the European Communities (Ref.: F.II.3-JC/0003); Brussels: European Commission, 1993: 189–204.Google Scholar
  53. 53.
    Hsiao K, Meiner Z, Kahana E, et al. Mutation of the prion protein in Libyan Jews with Creutzfeldt-Jakob disease. N Engl J Med 1991;324: 1091–1097.PubMedCrossRefGoogle Scholar
  54. 54.
    Goldfarb LG, Brown P, Mitrova E, et al. Creutzfeldt-Jacob disease associated with the PRNP codon 200Lys mutation: an analysis of 45 families. Eur J Epidemiol 1991;7:477–486.PubMedCrossRefGoogle Scholar
  55. 55.
    Masters CL, Harris JO, Gajdusek DC, Gibbs CJ Jr, Bernoulli C, Asher DM. Creutzfeldt-Jakob disease: patterns of worldwide occurrence and the significance of familial and sporadic clustering. Ann Neurol 1979;5:177–188.PubMedCrossRefGoogle Scholar
  56. 56.
    Brown P. The phenotypic expression of different mutations in transmissible human spongiform encephalopathy. Rev Neurol 1992;148:317–327.PubMedGoogle Scholar
  57. 57.
    Spongiform Encephalopathy Advisory Committee. Transmissible spongiform encephalopathies. A summary of present knowledge and research. London: HMSO Publication Centre, 1994:46.Google Scholar
  58. 58.
    Brown P, Gibbs CJ, Rodgers-Johnson P, et al. Human spongiform encephalopathy: the National Institutes of Health series of 300 cases of experimentally transmitted disease. Ann Neurol 1994;35:513–529.PubMedCrossRefGoogle Scholar
  59. 59.
    Bull LB, Murnane D. An outbreak of scrapie in British sheep imported into Victoria. Aust Vet J 1958;34:213–215.CrossRefGoogle Scholar
  60. 60.
    Brash AG. First outbreak of scrapie reported in New Zealand. NZ J Agriculture 1952;85:305–306.Google Scholar
  61. 61.
    Brash AG. Scrapie in imported sheep in New Zealand. NZ Vet J 1952;1: 27–30.CrossRefGoogle Scholar
  62. 62.
    Kirschbaum WR. Creutzfeldt-Jakob disease. New York: Elsevier, 1968.Google Scholar
  63. 63.
    Gajdusek DC. Infectious and noninfectious amyloidoses of the brain: Systemic amyloidoses as predictive models in transmissible and nontransmissible amyloidotic neurodegeneration of Creutzfeldt-Jakob disease and aging brain and Alzheimer’s disease. In: Calne DB, ed. Neurodegenerative diseases. Philadelphia: WB Saunders, 1994:301–317.Google Scholar
  64. 64.
    Matthews WB. Epidemiology of Creutzfeldt-Jakob disease in England and Wales. J Neurol Neurosurg Psychiatry 1975;38:210–213.PubMedCrossRefGoogle Scholar
  65. 65.
    Will RG, Matthews WB. Evidence for case-to-case transmission of Creutzfeldt-Jakob disease. J Neurol Neurosurg Psychiatry 1982;45:235–238.PubMedCrossRefGoogle Scholar
  66. 66.
    Garzuly F, Jellinger K, Pilz P. Subakute spongioese Encephalopthie (Jakob-Creutzfeldt-Syndrom). Klinisch-morphologische Analyse von 9 Faellen. (Subacute spongiform encephalopathy (Jakob-Cretzfeldt syndrome). Clinico-pathological evaluation of 9 cases). Arch Psychiatr Nervenkrank 1971;214:207–227.CrossRefGoogle Scholar
  67. 67.
    Brown P, Cathala F. Creutzfeldt-Jakob disease in France: I. Retrospective study of the Paris area during the ten-year period 1968–1977. Ann Neurol 1979;5: 189–192.PubMedCrossRefGoogle Scholar
  68. 68.
    Brown P, Cathala F, Gajdusek DC. Creutzfeldt-Jakob disease in France: III. Epidemiological study of 170 patients dying during the decade 1968–1977. Ann Neurol 1979;6:438–446.PubMedCrossRefGoogle Scholar
  69. 69.
    Beekes M, Baldauf E, Diringer H. Sequential appearance and accumulation of pathognomonic markers in the central nervous system of hamsters orally infected with scrapie. J Gen Virol 1996.Google Scholar
  70. 70.
    Beekes M, Baldauf E, Cassens S, Diringer H, Keyes P, Scott AC, et al. Western blot mapping of disease-specific amyloid in various animal species and humans with transmissible spongiform encephalopathies using a high-yield purification method. J Gen Virol 1995;76:2567–2576.PubMedCrossRefGoogle Scholar
  71. 71.
    Beekes M, Baldauf E, Cassens S, et al. Western blot mapping of disease-specific amyloid in various animal species and humans with transmissible spongiform encephalopathies using a high-yield purification method. J Gen Virol 1995; 76:2567–2576.PubMedCrossRefGoogle Scholar
  72. 72.
    Kascsak RJ, Rubenstein R, Merz PA, et al. Immunological comparison of scrapie-associated fibrils isolated from animals infected with four different scrapie strains. J Virol 1986;59:676–683.PubMedGoogle Scholar
  73. 73.
    Rubenstein R, Kascsak RJ, Merz PA, et al. Detection of scrapie-associated fibril (SAF) proteins using anti-SAF antibody in non-purified tissue preparations. J Gen Virol 1986;67:671–681.PubMedCrossRefGoogle Scholar
  74. 74.
    Rubenstein R, Carp RI, Ju W, et al. Concentration and distribution of infectivity and PrPSc following partial denaturation of a mouse-adapted and a hamster-adapted scrapie strain. Arch Virol 1994;139:301–311.PubMedCrossRefGoogle Scholar
  75. 75.
    Czub M, Braig HR, Diringer H. Replication of the scrapie agent in hamsters infected intracerebrally confirms the pathogenesis of an amyloid-inducing virosis. J Gen Virol 1988;69:1753–1756.PubMedCrossRefGoogle Scholar
  76. 76.
    Czub M, Braig HR, Diringer H. Pathogenesis of scrapie: study of the temporal development of clinical symptoms, of infectivity titres and scrapie-associated fibrils in brains of hamsters infected intraperitoneally. J Gen Virol 1986; 67:2005–2009.PubMedCrossRefGoogle Scholar
  77. 77.
    Nakashima Y, Konigsberg W. Reinvestigation of a region of the fd bacteriophage coat protein sequence. J Mol Biol 1974;88:598–600.PubMedCrossRefGoogle Scholar
  78. 78.
    Prusiner SB. The prion diseases. Sci Am 1995;272:48–51,54–7.PubMedCrossRefGoogle Scholar
  79. 79.
    Hadlow WJ, Kennedy RC, Race RE. Natural infection of Suffolk sheep with scrapie virus. J Infect Dis 1982;146:657–664.PubMedCrossRefGoogle Scholar
  80. 80.
    Hadlow WJ, Race RE, Kennedy RC, Eklund CM. Natural infection of sheep with scrapie virus. In: Prusiner SB, Hadlow WJ, eds. Slow transmissible diseases of the nervous system, vol 2. New York: Academic Press, 1979: 3–12.Google Scholar
  81. 81.
    Morrison LA, Fields BN. Parallel mechanisms in neuropathogenesis of enteric virus infections. J Virol 1991;65:2767–2772.PubMedGoogle Scholar
  82. 82.
    Ehlers B, Rudolph R, Diringer H. The reticuloendothelial system in scrapie pathogenesis. J Gen Virol 1984;65:423–428.PubMedCrossRefGoogle Scholar
  83. 83.
    Ehlers B, Diringer H. Dextran sulphate 500 delays and prevents mouse scrapie by impairment of agent replication in spleen. J Gen Virol 1984;65: 1325–1330.PubMedCrossRefGoogle Scholar
  84. 84.
    Kitamoto T, Muramoto T, Mohri S, Doh-Ura K, Tateishi J. Abnormal isoform of prion protein accumulates in follicular dendritic cells in mice with Creutzfeldt-Jakob disease. J Virol 1991;65:6292–6295.PubMedGoogle Scholar
  85. 85.
    McBride PA, Eikelenboom P, Kraal G, Fraser H, Bruce ME. PrP protein is associated with follicular dendritic cells of spleens and lymph nodes in uninfected and scrapie-infected mice. J Pathol 1992;168:413–418.PubMedCrossRefGoogle Scholar
  86. 86.
    Kimberlin RH, Walker CA. Pathogenesis of scrapie in mice after intragastric infection. Virus Res 1989;12:213–220.PubMedCrossRefGoogle Scholar
  87. 87.
    Mims CA. Aspects of the pathogenesis of virus diseases. Bacteriol Rev 1964;28:30–71.PubMedGoogle Scholar
  88. 88.
    Özel M, Diringer H. Small virus-like structure in fractions from scrapie hamster brain. Lancet 1994;343:894–895.PubMedCrossRefGoogle Scholar
  89. 89.
    Özel M, Xi Y-G, Baldauf E, Diringer H, Pocchiari M. Small virus-like structure in brains from cases of sporadic and familial Creutzfeldt-Jakob disease. Lancet 1994;344:923–924.PubMedCrossRefGoogle Scholar
  90. 90.
    Diringer H, Özel M. Übertragbare spongiforme Enzephalopathien—wodurch werden sie verursacht. Spektr Wissensch 1995;3:52–54.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1996

Authors and Affiliations

  • Heino Diringer
  • Michael Beekes
  • Elizabeth Baldauf
  • Sven Cassens
  • Muhsin Özel

There are no affiliations available

Personalised recommendations