Advertisement

The Immunology of Leishmania Major Infection in Mice

  • Richard M. Locksley
Part of the Serono Symposia USA book series (SERONOSYMP)

Abstract

The immunology of Leishmania major infection has been extensively characterized using inbred mouse strains. Control of disease is exquisitely T-cell dependent; neither nude nor scid mice are capable of restricting dissemination of the parasite and death without T-cell reconstitution (1–3). Further, control of infection is CD4+ T-cell dependent, since disease is fatal in major histocompatibility complex (MHC) class II-deficient mice that lack CD4+ T cells (4), but is readily controlled in MHC class I-deficient mice that lack CD8+ T cells (5). Appropriate parasite-specific CD4+ T-cell lines and clones were fully capable of restoring control of infection to otherwise deficient nude, SCID, or irradiated recipients (2, 3, 6, 7).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mitchell GF. Murine cutaneous leishmaniasis: resistance in reconstituted nude mice and several F1 hybrids infected with Leishmania tropica major. J immunogenet 1983;10:395–412PubMedCrossRefGoogle Scholar
  2. 2.
    Holaday BJ, Sadick MD, Wang Z-E, Reiner SL, Heinzel FP, Parslow TG, Locksley RM. Reconstitution of Leishmaniaimmunity in severe combined immunodeficient mice using Th1- and Th2-like cell lines. J immunol 1991;147:1653–8PubMedGoogle Scholar
  3. 3.
    Varkila K, Chatelain R, Leal LMC, Coffman RL. Reconstitution of C.B-17 scid mice with BALB/c T cells initiates a T helper type-1 response and renders them capable of healing Leishmania majorinfection. Eur J Immunol 1993;23:262–8PubMedCrossRefGoogle Scholar
  4. 4.
    Locksley RM, Reiner SL, Hatam F, Littman DR, Killeen N. Helper T cells without CD4: control of leishmaniasis in CD4-deficient mice. Science 1993;261:1448–51PubMedCrossRefGoogle Scholar
  5. 5.
    Wang Z-E, Reiner SL, Hatam F, Heinzel FP, Bouvier J, Turck CW, Locksley RM. Targeted activation of CD8 cells and infection of ß2-microglobulin-defi- cient mice fail to confirm a primary protective role for CD8 cells in experimental leishmaniasis. J Immunol 1993;151:2077–86PubMedGoogle Scholar
  6. 6.
    Moll H, Scollay R, Mitchell GF. Resistance to cutaneous leishmaniasis in nude mice injected with L3T4+ T cells but not with Ly-2+ T cells. Immunol Cell Biol 1988;66:57–63PubMedCrossRefGoogle Scholar
  7. 7.
    Scott P, Caspar P, Sher A. Protection against Leishmania major in BALB/c mice by adoptive transfer of a T cell clone recognizing a low molecular weight antigen released by promastigotes. J Immunol 1990;144:1075–9PubMedGoogle Scholar
  8. 8.
    Antoine J-C, Jouanne C, Lang T, Prina E, de Chastellier C, Frehel C. Localiza¬tion of major histocompatibility complex class II molecules in phagolysosomes of murine macrophages infected with Leishmania amazonensis. Infect Immunol 1991;59:764–9Google Scholar
  9. 9.
    Russel DG, Xu S, Chakraborty P. Intracellular trafficking and the parasi-tophorous vacuole of Leishmania mexicana-infected macrophages. J Cell Sei 1992;103:1193–210Google Scholar
  10. 10.
    Amigorena S, Drake JR, Webster P, Mellman I. Transient accumulation of new class II MHC molecules in a novel endocytic compartment in B lymphocytes. Nature 1994;369:113–20PubMedCrossRefGoogle Scholar
  11. 11.
    Tulp A, Verwoerd D, Dobberstein B, Ploegh HL, Pieters J. Isolation and characterization of the intracellular MHC class II compartment. Nature 1994;369:120–6PubMedCrossRefGoogle Scholar
  12. 12.
    Prina E, Jouanne C, de Souze Lao S, Szabo A, Guillet J-G, Antoine J-C. Antigen presentation capacity of murine macrophages infected with Leishmania amazonensis amastigotes. J Immunol 1993;151:2050–61PubMedGoogle Scholar
  13. 13.
    Fruth U, Sdlioz N, Louis JA. Leishmania major interferes with antigen presen¬tation by infected macrophages. J Immunol 1993;150:1857–64PubMedGoogle Scholar
  14. 14.
    Lopez JA, LeBowitz JH, Beverley SM, Rammensee H-G, Overath P. Leishmania mexicana promastigotes induce cytotoxic T lymphocytes in vivo that do not recognize infected macrophages. Eur J Immunol 1993;23:217–23PubMedCrossRefGoogle Scholar
  15. 15.
    Scott PA, Natovitz P, Coffman RL, Pearce E, Sher A. Immunoregulation of cutaneous leishmaniasis. T cell lines that transfer protective immunity or exac¬erbation belong to different T helper subsets and respond to distinct parasite antigens. J Exp Med 1988;168:1675–84PubMedCrossRefGoogle Scholar
  16. 16.
    Titus RG, Muller I, Kimsey P, Cerny A, Behin R, Zinkernagel RM, Louis JA. Exacerbation of experimental murine cutaneous leishmaniasis with CD4+ Leishmania major-specific T cell lines or clones which secrete interferon-y and mediate parasite-specific delayed-type hypersensitivity. Eur J Immunol 1991;21:559–67PubMedCrossRefGoogle Scholar
  17. 17.
    Wang Z-E, Reiner SL, Zheng S, Dalton DK, Locksley RM. CD4+ effector cells default to the Th2 pathway in interferon-γ-deficient mice infected with Leishmania major. J Exp Med 1994;179:1367–71PubMedCrossRefGoogle Scholar
  18. 18.
    Swihart K, Fruth U, Messmer N, Hug K, Behin R, Huang S, Del Giudice G, Aguet M, Louis JA. Mice from a genetically resistant background lacking the interferon y receptor are susceptible to infection with Leishmania major but mount a polarized T helper cell 1-type CD4+ T cell response. J Exp Med 1995;181:961–71PubMedCrossRefGoogle Scholar
  19. 19.
    Belosevic M, Finbloom DS, Van der Meide PH, Slayter MV, Nacy CA. Administration of monoclonal anti-IFN-γ antibodies in vivo abrogates resistance of C3H/HeN mice to infection with Leishmania major. J Immunol 1989;143:266–74PubMedGoogle Scholar
  20. 20.
    Dalton DK, Pitts-Meek S, Keshav S, Figari IS, Bradley A, Stewart T. Multiple defects of immune cell function in mice with disrupted interferon-y genes. Science 1993;259:1739–42PubMedCrossRefGoogle Scholar
  21. 21.
    Green SJ, Meitzer MS, Hibbs JB, Nacy CA. Activated macrophages destroy intracellular Leishmania major amastigotes by an L-arginine-dependent path¬way. J Immunol 1990;144:278–86PubMedGoogle Scholar
  22. 22.
    Liew FY, Millott S, Parkinson C, Palmer RMJ, Moncada S. Macrophage killing of Leishmania parasite in vivo is mediated by nitric oxide from L-arginine. J Immunol 1990;144:4794–7PubMedGoogle Scholar
  23. 23.
    Heinzel FP, Sadick MD, Mutha SS, Locksley RM. Production of interferon γ, interleukin 2, interleukin 4 and interleukin 10 by CD4+ lymphocytes in vivo during healing and progressive murine leishmaniasis. Proc Natl Acad Sei USA 1991;88:7011–5CrossRefGoogle Scholar
  24. 24.
    Howard JG, Hale C, Chan-Liew WL. Immunological regulation of experimental cutaneous leishmaniasis. 1. Immunogenetic aspects of susceptibility to Leishmania tropica in mice. Parasite Immunol 1980;2:303–14PubMedCrossRefGoogle Scholar
  25. 25.
    DeTolla LJ, Scott PA, Farrell JP. Single gene control of resistance to cutaneous leishmaniasis in mice. Immunogenetics 1981;14:29–39CrossRefGoogle Scholar
  26. 26.
    Howard JG, Hale C, Liew FY. Genetically determined susceptibility to Leishmania tropica infection is expressed by hematopoietic donor cells in mouse radiation chimeras. Nature 1980;288:161–2PubMedCrossRefGoogle Scholar
  27. 27.
    Reiner SL, Zheng S, Wang ZE, Stowring L, Locksley RM. Leishmania promastigotes evade induction of interleukin 12 (IL-12) induction by macroph¬ages and stimulate a broad range of cytokines from CD4+ T cells during initiation of infection. J Exp Med 1994;179:447–56PubMedCrossRefGoogle Scholar
  28. 28.
    Gazzinelli RT, Hieny S, Wynn TA, Wolf S, Sher A. Interleukin 12 is required for the T-lymphocyte-independent induction of interferon γ by an intracellular parasite and induces resistance in T-cell-deficient hosts. Proc Natl Acad Sei USA 1993;90:6115–9CrossRefGoogle Scholar
  29. 29.
    Tripp CS, Wolf SF, Unanue ER. Interleukin 12 and tumor necrosis factor α are costimulators of interferon γ production by natural killer cells in severe combined deficiency mice with listeriosis, and interleukin 10 is a physiologic antagonist. Proc Natl Acad Sei USA 1993;90:3725–9CrossRefGoogle Scholar
  30. 30.
    Da Silva RP, Hall BF, Joiner KA, Sacks DL. CR1, the C3b receptor, mediates binding of infective Leishmania major metacyclic promastigotes to human mac¬rophages. J Immunol 1989;143:617–22PubMedGoogle Scholar
  31. 31.
    Morris L, Troutt AB, McLeod KS, Kelso A, Handman E, Aebischer T. Interleukin 4 but not gamma interferon production correlates with the severity of murine cutaneous leishmaniasis. Infect Immunol 1993;61:3459–65Google Scholar
  32. 32.
    Wang Z-E, Zheng S, Corry DB, Dalton DK, Seder RA, Reiner SL, Locksley RM. Interferon-y-independent effects of interleukin 12 administered during acute or established infection due to Leishmania major. Proc Natl Acad Sei USA 1994;91:12932–6CrossRefGoogle Scholar
  33. 33.
    Rocken M, Saurat J-H, Hauser C. A common precursor for CD4+ T cells producing IL-2 or IL-4. J Immunol 1992;148:1031–6PubMedGoogle Scholar
  34. 34.
    Hsieh C-S, Heimberger AB, Gold JS, O’Garra A, Murphy KM. Differential regulation of T helper phenotype development by interleukins 4 and 10 in an aß T-cell-receptor transgenic system. Proc Natl Acad Sei USA 1992;89:6065–9CrossRefGoogle Scholar
  35. 35.
    Seder RA, Paul WE, Davis MM, de St. Groth BF. The presence of interleukin 4 during in vitro priming determines the lymphokine-producing potential of CD4+ T cells from T cell receptor transgenic mice. J Exp Med 1992;176:1091–8PubMedCrossRefGoogle Scholar
  36. 36.
    Hsieh C-S, Macatonia SE, Tripp CS, Wolf SF, O’Garra A, Murphy KM. Development of Thl CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 1993;260:5479PubMedCrossRefGoogle Scholar
  37. 37.
    Heinzel FP, Schoenhaut DS, Rerko RM, Rosser LE, Gately MK. Recombinant interleukin 12 cures mice infected with Leishmania major. J Exp Med 1993;177:1505–9PubMedCrossRefGoogle Scholar
  38. 38.
    Sypek JP, Chung CL, Mayor SEH, Subramanyam JM, Goldman SJ, Sieburth DS, Wolf SF, Schaub RG. Resolution of cutaneous leishmaniasis: interleukin 12 initiates a protective T helper type 1 immune response. J Exp Med 1993;177:1797–802PubMedCrossRefGoogle Scholar
  39. 39.
    Sadick MD, Heinzel FP, Holaday BF, Pu RT, Dawkins RS, Locksley RM. Cure of murine leishmaniasis with anti-interleukin 4 monclonal antibody. J Exp Med 1990;171:115–27PubMedCrossRefGoogle Scholar
  40. 40.
    Heinzel FP, Rerko RM, Hatam F, Locksley RM. Interleukin 2 is necessary for progression of leishmaniasis in susceptible murine hosts. J Immunol 1993;150:3924–31PubMedGoogle Scholar
  41. 41.
    Scott B, Liblau R, Degermann S, Marconi LA, Ogata L, Caton AJ, McDevitt HO, Lo D. A role for non-MHC genetic polymorphism in susceptibility to spontaneous autoimmunity. Immunity 1994;1:73–82PubMedCrossRefGoogle Scholar
  42. 42.
    Hsieh C-S, Macatonia SE, O’Garra A, Murphy KM. T cell genetic background determines default T helper phenotype development in vitro. J Exp Med 1995;181:71321PubMedCrossRefGoogle Scholar
  43. 43.
    Schrier DJ, Phan SH. Modulation of bleomycin-induced pulmonary fibrosis in the BALB/c mouse by cyclophosphamide-sensitive T cells. Am J Pathol 1984;116:270–8PubMedGoogle Scholar
  44. 44.
    Mock B, Blackwell J, Hilgers J, Potter M, Nacy CA. Genetic control of Leishmania major infection in congenic, recombinant inbred and F2 populations of mice. Eur J Immunogenet 1993;20:335–48PubMedCrossRefGoogle Scholar
  45. 45.
    Roberts M, Mock BA, Blackwell JM. Mapping of genes controlling Leishmania major infection in CXS recombinant inbred mice. Eur J Immunogenet 1993;20:349–62PubMedCrossRefGoogle Scholar
  46. 46.
    Buchberg AM, Buckwalter MS, Camper SA. Mouse chromosome 11. Mammal. Genome 1992;3:S162–81Google Scholar
  47. 47.
    Schorle H, Holtschke T, Hunig T, Schimpl A, Horak I. Development and function of T cells in mice rendered interleukin-2 deficient by gene targeting. Nature 1991;352:621–4PubMedCrossRefGoogle Scholar
  48. 48.
    Sadlack B, Kuhn R, Schorle H, Rajewsky K, Muller W, Horak I. Development and proliferation of lymphocytes in mice deficient for both interleukins-2 and -4. Eur J Immunol 1994; 24: 281–4PubMedCrossRefGoogle Scholar
  49. 49.
    Russell SM, Keegan AD, Harada N, Nakamura Y, Noguchi M, Leland P, Friedmann MC, Miyajima A, Puri RK, Paul WE, Leonard WJ. Interleukin-2 receptor y chain: a functional component of the interleukin-4 receptor. Science 1993;262:1880–3PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1996

Authors and Affiliations

  • Richard M. Locksley

There are no affiliations available

Personalised recommendations