Advertisement

Activating Mutations of the Luteinizing Hormone Receptor Gene in Familial Testotoxicosis

  • Andrew Shenker
  • Shinji Kosugi
Part of the Serono Symposia USA Norwell, Massachusetts book series (SERONOSYMP)

Abstract

Heptahelical, membrane-spanning cell-surface receptors utilize he-terotrimeric guanine nucleotide binding proteins (G proteins) to transmit extracellular signals to cellular effectors (1–4). Diverse stimuli, including photons, hormones, neurotransmitters, odorants, proteases, and ions, trigger conformational changes in the receptor transmembrane helices that are relayed to the cytoplasmic surface, leading to G protein activation (Fig. 20.1A).

Keywords

Leydig Cell Precocious Puberty Nephrogenic Diabetes Insipidus Luteinizing Hormone Receptor Thyrotropin Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baldwin JM. Structure and function of receptors coupled to G proteins. Curr Opin Cell Biol 1994;6:180–90.PubMedCrossRefGoogle Scholar
  2. 2.
    Strader CD, Fong TM, Tota MR, Underwood D. Structure and function of G protein-coupled receptors. Annu Rev Biochem 1994;63:101–32.PubMedCrossRefGoogle Scholar
  3. 3.
    Birnbaumer M. Mutations and diseases of G protein coupled receptors. J Recept Signal Transduct Res 1995;15:131–60.PubMedCrossRefGoogle Scholar
  4. 4.
    Shenker A. G protein-coupled receptor structure and function: the impact of disease-causing mutations. Baillieres Clin Endocrinol Metab 1995;9: 427–51.PubMedCrossRefGoogle Scholar
  5. 5.
    Schwartz TW. Locating ligand-binding sites in 7TM receptors by protein engineering. Curr Opin Biotechnol 1994;5:434–44.PubMedCrossRefGoogle Scholar
  6. 6.
    Tsai-Morris CH, Buczko E, Wang W, Dufau ML. Intronic nature of the rat luteinizing hormone receptor gene defines a soluble receptor subspecies with hormone binding activity. J Biol Chem 1990;265:19385–8.PubMedGoogle Scholar
  7. 7.
    Vassart G, Dumont JE. The thyrotropin receptor and the regulation of thyrocyte function and growth. Endocr Rev 1992;13:596–611.PubMedGoogle Scholar
  8. 8.
    Segaloff DL, Ascoli M. The lutropin/choriogonadotropin receptor… 4 years later. Endocr Rev 1993;14:324–47.PubMedGoogle Scholar
  9. 9.
    Tensen C, van Kesteren ER, Planta RJ, Cox KJA, Burke JF, van Heerikhuizen H, et al. A G protein-coupled receptor with low density lipoprotein-binding motifs suggests a role for lipoproteins in G-linked signal transduction. Proc Natl Acad Sci USA 1994;91:4816–20.PubMedCrossRefGoogle Scholar
  10. 10.
    Conkin BR, Bourne HR. Marriage of the flytrap and the serpent. Nature 1994;367:22.CrossRefGoogle Scholar
  11. 11.
    Nathans J. Rhodopsin: structure, function, and genetics. Biochemistry 1992;31:4923–31.PubMedCrossRefGoogle Scholar
  12. 12.
    Amis S, Fahmy K, Hofmann KP, Sakmar TP. A conserved carboxylic acid group mediates light-dependent proton uptake and signaling by rhodopsin. J Biol Chem 1994;269:23879–81.Google Scholar
  13. 13.
    Kosugi S, Mori T. The third exoplasmic loop of the thyrotropin receptor is partially involved in signal transduction. FEBS Lett 1994;349:89–92.PubMedCrossRefGoogle Scholar
  14. 14.
    Ji I, Zeng H, Ji TH. Receptor activation of and signal generation by the lutropin/choriogonadotropin receptor. Cooperation of Asp397 of the receptor and αLys91 of the hormone. J Biol Chem 1993;268:22971–4.PubMedGoogle Scholar
  15. 15.
    Hoflack J, Hibert MF, Trumpp-Kallmeyer S, Bidart J-M. Three-dimensional models of gonado-thyrotropin hormone receptor transmembrane domain. Drug Des Discov 1993;10:157–71.PubMedGoogle Scholar
  16. 16.
    Ballesteros JA, Weinstein H. Analysis and refinement of criteria for predicting the structure and relative orientations of transmembrane helical domains. Biophys J 1992;62:107–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Trumpp-Kallmeyer S, Hoflack J, Bruinvels A, Hibert M. Modeling of G-protein-coupled receptors: application to dopamine, adrenaline, serotonin, acetylcholine, and mammalian opsin receptors. J Med Chem 1992;35:3448–62.PubMedCrossRefGoogle Scholar
  18. 18.
    Hedin KE, Duerson K, Clapham DE. Specificity of receptor-G protein interactions: searching for the structure behind the signal. Cell Signal 1993;5:505–18.PubMedCrossRefGoogle Scholar
  19. 19.
    Taylor JM, Neubig RR. Minireview: peptides as probes for G protein signal transduction. Cell Signal 1995;6:841–9.CrossRefGoogle Scholar
  20. 20.
    Oliveira L, Paiva ACM, Sander C, Vriend G. A common step for signal transduction in G protein-coupled receptors. Trends Pharmacol Sci 1994;15: 170–2.PubMedCrossRefGoogle Scholar
  21. 21.
    Kjelsberg MA, Cotecchia S, Ostrowski J, Caron MG, Lefkowitz RJ. Constitutive activation of the α1B-adrenergic receptor by all amino acid substitutions at a single site: evidence for a region which constrains receptor activation. J Biol Chem 1992;267:1430–3.PubMedGoogle Scholar
  22. 22.
    Allen LF, Lefkowitz RJ, Caron MG, Cotecchia S. G-protein-coupled receptor genes as protooncogenes: constitutively activating mutation of the α1B-adrenergic receptor enhances mitogenesis and tumorigenicity. Proc Natl Acad Sci USA 1991;88:11354–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Samama P, Cotecchia S, Costa T, Lefkowitz RJ. A mutation-induced activated state of the β2-adrenergic receptor: extending the ternary complex model. J Biol Chem 1993;268:4625–36.PubMedGoogle Scholar
  24. 24.
    Ren Q, Kurose H, Lefkowitz RJ, Cotecchia S. Constitutively active mutants of the α2-adrenergic receptor. J Biol Chem 1993;268:16483–7.PubMedGoogle Scholar
  25. 25.
    Kosugi S, Okajima F, Ban T, Hidaka A, Shenker A, Kohn LD. Substitutions of different regions of the third cytoplasmic loop of the thyrotropin (TSH) receptor have selective effects on constitutive, TSH-, and TSH receptor autoantibody-stimulated phosphoinositide and 3′,5′-cyclic adenosine monophosphate signal generation. Mol Endocrinol 1993;7:1009–20.PubMedCrossRefGoogle Scholar
  26. 26.
    Boone C, Davis NG, Sprague GF Jr. Mutations that alter the third cytoplasmic loop of the a-factor receptor lead to a constitutive and hypersensitive pheno-type. Proc Natl Acad Sci USA 1993;90:9921–5.PubMedCrossRefGoogle Scholar
  27. 27.
    Dryja TP, McGee TL, Hahn LB, Cowley GS, Olsson JE, Reichel E, et al. Mutations within the rhodopsin gene in patients with autosomal dominant retinitis pigmentosa. N Engl J Med 1990;323:1302–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Rosenthal W, Seibold A, Antaramian A, Lonergan M, Arthus M-F, Hendy GN, et al. Molecular identification of the gene responsible for congenital nephrogenic diabetes insipidus. Nature 1992;359:233–5.PubMedCrossRefGoogle Scholar
  29. 29.
    Bargmann CI, Hung M-C, Weinberg RA. Multiple independent activations of the neu oncogene by a point mutation altering the transmembrane domain of p185. Cell 1986;45:649–57.PubMedCrossRefGoogle Scholar
  30. 30.
    Mulligan LM, Kwok JBJ, Healey CS, Elsdon MJ, Eng C, Gardner E, et al. Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A. Nature 1993;363:458–60.PubMedCrossRefGoogle Scholar
  31. 31.
    de la Chapelle A, Traskelin A-L, Juvonen E. Truncated erythropoietin receptor causes dominantly inherited benign human erythrocytosis. Proc Natl Acad Sci USA 1993;90:4495–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Yaghmai R, Hazelbauer GL. Ligand occupancy mimicked by single residue substitutions in a receptor: transmembrane signaling induced by mutation. Proc Natl Acad Sci USA 1992;89:7890–4.PubMedCrossRefGoogle Scholar
  33. 33.
    Holland FJ. Gonadotropin-independent precocious puberty. Endocrinol Metab Clin North Am 1991;20:191–210.PubMedGoogle Scholar
  34. 34.
    Shenker A, Laue L, Kosugi S, Merendino JJ Jr, Minegishi T, Cutler GB Jr. A constitutively activating mutation of the luteinizing hormone receptor in familial male precocious puberty. Nature 1993;365:652–4.PubMedCrossRefGoogle Scholar
  35. 35.
    Kremer H, Mariman E, Otten BJ, Moll GW Jr, Stoelinga GBA, Wit JM, et al. Cosegregation of missense mutations of the luteinizing hormone receptor gene with familial male-limited precocious puberty. Hum Mol Genet 1993;2:1779–83.PubMedCrossRefGoogle Scholar
  36. 36.
    Yano K, Hidaka A, Saji M, Polymeropoulos MH, Okuno A, Kohn LD, et al. A sporadic case of male-limited precocious puberty has the same constitutively activating point mutation in luteinizing hormone/choriogonadotropin receptor gene as familial cases. J Clin Endocrinol Metab 1994;79:1818–23.PubMedCrossRefGoogle Scholar
  37. 37.
    Kosugi S, Van Dop C, Geffner ME, Rabl W, Carel J-C, Chaussain J-L, et al. Characterization of heterozygous mutations causing constitutive activation of the luteinizing hormone receptor in familial male precocious puberty. Hum Mol Genet 1995;4:183–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Boepple P, Crowley WF Jr, Albanese C, Jameson JL. Activating mutations of the LH receptor in sporadic male gonadotropin-independent precocious puberty [abstract]. Program and Abstracts, The Endocrine Society 76th Annual Meeting 1994;494.Google Scholar
  39. 39.
    Laue L, Chan W-Y, Hsueh AJW, Kudo M, Hsu SY, Wu S-M, et al. Genetic heterogeneity of constitutively activating mutations of the human luteinizing hormone receptor in familial male-limited precocious puberty. Proc Natl Acad Sci USA 1995;92:1906–10.PubMedCrossRefGoogle Scholar
  40. 40.
    Yano K, Saji M, Hidaka A, Moriya N, Okuno A, Kohn LD, et al. A new constitutively activating point mutation in the luteinizing hormone/choriogonadotropin receptor gene in cases of male-limited precocious puberty. J Clin Endocrinol Metab 1995;80:1162–68.PubMedCrossRefGoogle Scholar
  41. 41.
    Müller J, Kosugi S, Shenker A. A severe, non-familial case of testotoxicosis associated with a new mutation (Asp578 to Tyr) of the lutropin receptor (LHR) gene [abstract]. Horm Res 1995;44(Suppl):13.Google Scholar
  42. 42.
    Sklar CA, Conte FA, Kaplan SL, Grumbach MM. Human chorionic gonadotropin-secreting pineal tumor: relation to pathogenesis and sex limitation of sexual precocity. J Clin Endocrinol Metab 1981;53:656–60.PubMedCrossRefGoogle Scholar
  43. 43.
    Ji I, Ji TH. Asp383 in the second transmembrane domain of the lutropin receptor is important for high affinity hormone binding and cAMP production. J Biol Chem 1991;266:14953–7.PubMedGoogle Scholar
  44. 44.
    Robinson PR, Cohen GB, Zhukovsky EA, Oprian DD. Constitutively active mutants of rhodopsin. Neuron 1992;9:719–25.PubMedCrossRefGoogle Scholar
  45. 45.
    Dryja TP, Berson EL, Rao VR, Oprian DD. Heterozygous missense mutation in the rhodopsin gene as a cause of congenital stationary night blindness. Nat Genet 1993;4:280–3.PubMedCrossRefGoogle Scholar
  46. 46.
    Rao VR, Cohen GB, Oprian DD. Rhodopsin mutation G90D and a molecular mechanism for congenital night blindness. Nature 1994;367:639–42.PubMedCrossRefGoogle Scholar
  47. 47.
    Pollak MR, Brown EM, Estep HL, McLaine PN, Kifor O, Park J, et al. Autosomal dominant hypocalcemia caused by a Ca2+-sensing receptor gene mutation. Nat Genet 1994;8:303–7.PubMedCrossRefGoogle Scholar
  48. 48.
    Schipani E, Kruse K, Juppner H. A constitutively active mutant PTH-PTHrP receptor in Jansen-type metaphyseal chondrodysplasia. Science 1995;268:98–100.PubMedCrossRefGoogle Scholar
  49. 49.
    Parma J, Duprez L, Van Sande J, Cochaux P, Gervy C, Mockel J, et al. Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature 1993;365:649–51.PubMedCrossRefGoogle Scholar
  50. 50.
    Porcellini A, Ciullo I, Laviola L, Amabile G, Fenzi G, Awedimento VE. Novel mutations of thyrotropin receptor gene in thyroid hyperfunctioning adenomas. Rapid identification by fine needle aspiration biopsy. J Clin Endocrinol Metab 1994;79:657–61.PubMedCrossRefGoogle Scholar
  51. 51.
    Kopp P, Van Sande J, Parma J, Duprez L, Gerber H, Joss E, et al. Brief report: congenital hyperthyroidism caused by a mutation in the thyrotropin-receptor gene. N Engl J Med 1995;332:150–4.PubMedCrossRefGoogle Scholar
  52. 52.
    Vassart G, Parma J, Van Sande J, Dumont JE. The thyrotropin receptor and the regulation of thyrocyte function and growth: update 1994. In: Braverman LE, Refetoff S, eds. Endocrine Reviews Monographs 3. Clinical and molecular aspects of diseases of the thyroid. Bethesda, MD: Endocrine Society Press, 1994:77–80.Google Scholar
  53. 53.
    Nothacker H-P, Grimmelikhuijzen CJP. Molecular cloning of a novel, putative G protein-coupled receptor from sea anemones structurally related to members of the FSH, TSH, LH/CG receptor family from mammals. Biochem Biophys Res Commun 1993;197:1062–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Grumbach MM, Conte FA. Disorders of sex differentiation. In: Wilson JD, Foster DW, eds. Williams’ textbook of endocrinology. Philadelphia: WB Saunders, 1992:853–951.Google Scholar
  55. 55.
    Kremer H, Kraaij R, Toledo SPA, Post M, Fridman JB, Hayashida CY, et al. Male pseudohermaphroditism due to a homozygous missense mutation of the luteinizing hormone receptor gene. Nat Genet 1995;9:160–4.PubMedCrossRefGoogle Scholar
  56. 56.
    Laue L, Wu SM, Kudo M, Hsueh AJW, Griffin JE, Wilson JD, et al. An inactivating mutation of the human luteinizing hormone receptor (hLHR) gene in familial Leydig cell hypoplasia [abstract]. Mol Biol Cell 1994;5:68a.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1996

Authors and Affiliations

  • Andrew Shenker
  • Shinji Kosugi

There are no affiliations available

Personalised recommendations