Skip to main content

Molecular Cytogenetics of Solid Tumor Progression

  • Conference paper
Hormonal Carcinogenesis II

Abstract

Solid tumors are thought to develop and progress by a multi-step process, involving numerous genetic events during tumor evolution (1). Even in cases of familial inheritance, when an individual may already be predisposed to tumorigenesis by carrying a mutation in one allele of a tumor suppressor gene (retinoblastoma, p53, BRCA1, etc.), it is likely that several additional genetic events are required during the progression of a tumor clone from normal epithelium through premalignant, invasive, and metastatic stages. Characterization of the mechanisms underlying tumor progression, and of the genetic events specific to individual tumor types, will lead to improved clinical management and possibly to new therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fearon ER and Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61:759–767.

    Article  PubMed  CAS  Google Scholar 

  2. Hartwell L (1992) Defects in a cell cycle checkpoint may be responsible for the genomic instability of cancer cells. Cell 71:543–546.

    Article  PubMed  CAS  Google Scholar 

  3. Livingstone LR, White A, Sprouse J, et al. (1992) Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell 70:923–935.

    Article  PubMed  CAS  Google Scholar 

  4. Bonsing BA, Devilee P, Cleton-Jansen AM, et al. (1993) Evidence for limited molecular genetic heterogeneity as defined by allelotyping and clonal analysis in nine metastatic breast carcinomas. Cancer Res 53:3804–3811.

    PubMed  CAS  Google Scholar 

  5. Bronner CE, Baker SM, Morrison PT, et al. (1994) Mutation in the DNA mismatch repair gene homologue hMLHl is associated with hereditary non-polyposis colon cancer. Nature 368:258–261.

    Article  PubMed  CAS  Google Scholar 

  6. Fishel R, Lescoe MK, Rao MR, et al. (1994) The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 77:167.

    Article  CAS  Google Scholar 

  7. Saint-Ruf C, Gerbault-Seureau M, Viegas-Pequignot E, et al. (1990) Proto-oncogene amplification and homogeneously staining regions in human breast carcinomas. Genes Chromosom Cancer 2:18–26.

    Article  PubMed  CAS  Google Scholar 

  8. Kallioniemi OP, Visakorpi T, Holli K, et al. (1991) Improved prognostic impact of S-phase values from paraffin-embedded breast and prostate carcinomas after correcting for nuclear slicing. Cytometry 12:413–421.

    Article  PubMed  CAS  Google Scholar 

  9. Kallioniemi OP, Holli K, Visakorpi T, et al. (1991) Association of c-erbB-2 protein over-expression with high rate of cell proliferation, increased risk of visceral metastasis and poor long-term survival in breast cancer. Int J Cancer 49:650–655.

    Article  PubMed  CAS  Google Scholar 

  10. Isola J, Visakorpi T, Holli K, Kallioniemi, OP (1992) Association of overexpression of tumor suppressor protein p53 with rapid cell proliferation and poor prognosis in node-negative breast cancer patients. J Natl Cancer Inst 84:1109–1114.

    Article  PubMed  CAS  Google Scholar 

  11. Thor AD, Moore DI, Edgerton SM, et al. (1992) Accumulation of p53 tumor suppressor gene protein: An independent marker of prognosis in breast cancers. J Natl Cancer Inst 84:845–855.

    Article  PubMed  CAS  Google Scholar 

  12. Sauter G, Moch H, Moore D, et al. (1993) Heterogeneity of erbB-2 gene amplification in bladder cancer. Cancer Res 53:2199–2203.

    PubMed  CAS  Google Scholar 

  13. Goodson W3, Ljung BM, Waldman F, et al. (1991) In vivo measurement of breast cancer growth rate. Arch Surg 126:1220–1223.

    PubMed  Google Scholar 

  14. Waldman FM, Carroll PR, Cohen MB, et al. (1993) 5-Bromodeoxyuridine incorporation and PCNA expression as measures of cell proliferation in transitional cell carcinoma of the urinary bladder. Mod Pathol 6:20–24.

    PubMed  CAS  Google Scholar 

  15. Weidner N, Semple JP, Welch WR, Folkman J (1991) Tumor angiogenesis and metastasis-correlation in invasive breast carcinoma. N Engl J Med 324:1–8.

    Article  PubMed  CAS  Google Scholar 

  16. Weidner N, Folkman J, Pozza F, et al. (1992) Tumor angiogenesis: A new significant and independent prognostic indicator in early-stage breast carcinoma [see comments]. J Natl Cancer Inst 84:1875–1887.

    Article  PubMed  CAS  Google Scholar 

  17. Pinkel D, Straume T, Gray, JW (1986) Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci USA 83:2934–2938.

    Article  PubMed  CAS  Google Scholar 

  18. Matsumura K, Kallioniemi A, Kallioniemi O, et al. (1992) Deletion of chromosome 17p loci in breast cancer cells detected by fluorescence in situ hybridization. Cancer Res 52:3474–3477.

    PubMed  CAS  Google Scholar 

  19. Waldman FM, Carroll PR, Kerschmann R, et al. (1991) Centromeric copy number of chromosome 7 is strongly correlated with tumor grade and labeling index in human bladder cancer. Cancer Res 51:3807–3813.

    PubMed  CAS  Google Scholar 

  20. Sauter G, Haley J, Chew K, et al. (1994) Epidermal-growth-factor-receptor expression is associated with rapid tumor proliferation in bladder cancer. Int J Cancer 57:508–514.

    Article  PubMed  CAS  Google Scholar 

  21. Kallioniemi OP, Kallioniemi A, Kurisu W, et al. (1992) ERBB2 amplification in breast cancer analyzed by fluorescence in situ hybridization. Proc Natl Acad Sci U S A 89:5321–5325.

    Article  PubMed  CAS  Google Scholar 

  22. Kallioniemi A, Kallioniemi OP, Sudar D, et al. (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258:818–821.

    Article  PubMed  CAS  Google Scholar 

  23. Kallioniemi OP, Kallioniemi A, Sudar D, et al. (1993) Comparative genomic hybridization: A rapid new method for detecting and mapping DNA amplification in tumors. Semin Cancer Biol 4:41–46.

    PubMed  CAS  Google Scholar 

  24. Speicher MR, du Manoir S, Schrock E, et al. (1993) Molecular cytogenetic analysis of formalin-fixed, paraffin-embedded solid tumors by comparative genomic hybridization after universal DNA-amplification. Hum Mol Genet 2:1907–1914.

    Article  PubMed  CAS  Google Scholar 

  25. Kallioniemi A, Kallioniemi OP, Piper J, et al. (1994) Detection and mapping of amplified DNA sequences in breast cancer by comparative genomic hybridization. Proc Natl Acad Sci U S A 91:2156–2160.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Waldman, F.M., Sauter, G., Isola, J., Kallioniemi, O., Kallioniemi, A. (1996). Molecular Cytogenetics of Solid Tumor Progression. In: Li, J.J., Li, S.A., Gustafsson, JÃ…., Nandi, S., Sekely, L.I. (eds) Hormonal Carcinogenesis II. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2332-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2332-0_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7506-0

  • Online ISBN: 978-1-4612-2332-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics