Skip to main content

Cell Cycle Control

  • Conference paper
  • 67 Accesses

Abstract

All organisms must control their cell division. Unicellular organisms have to coordinate nuclear division, cytokinesis (cell separation) and DNA synthesis so that the correct order of events is maintained (1, 2). In addition, the cell cycle must be coordinated with nutrient availability and differentiation into the meiotic, or sexual, cycle. Multicellular organisms, such as humans, also have to maintain the correct order of events within the cell cycle, and must, in addition, regulate the growth and division of different tissues so that uncontrolled proliferation does not lead to tumorigenesis (3, 4). This complex task of controlling the timing of cell proliferation in response to both external stimuli and internal status is not yet fully understood. The study of cell cycle controls in a number of experimental systems has led to the discovery that much of the basic machinery underlying control of the cell cycle has been conserved in all eukaryotic organisms (5). In this chapter, I will attempt to describe these fundamental mechanisms that control the cell cycle, and to relate them to the etiology of cancer development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hartwell LH, Weinert TA (1989) Checkpoints: Controls which ensure the order of cell cycle events. Science 246:629–634.

    Article  PubMed  CAS  Google Scholar 

  2. Enoch T, Nurse P (1991) Coupling M phase and S phase: Control maintaining the dependence of mitosis on chromosome replication. Cell 65:921–923.

    Article  PubMed  CAS  Google Scholar 

  3. Murray AW (1992) Creative blocks: Cell cycle checkpoints and feedback controls. Nature 359:599–604.

    Article  PubMed  CAS  Google Scholar 

  4. Hartwell LH (1992) Defects in cell cycle checkpoints may be responsible for the genomic instability of cancer cells. Cell 71:543–546.

    Article  PubMed  CAS  Google Scholar 

  5. Nurse P (1990) Universal control mechanism regulating onset of M-phase. Nature 344:503–507.

    Article  PubMed  CAS  Google Scholar 

  6. Nurse P (1975) Genetic control of cell size and cell division in yeast. Nature 256 547:551.

    Google Scholar 

  7. Lee MG, Nurse P (1987) Complementation used to clone a human homologue of the fission yeast cell cycle control gene cdc2. Nature 327:31–35.

    Article  PubMed  CAS  Google Scholar 

  8. Pines J (1993) Cyclins and cyclin dependent kinases: Take your partners. Trends in Bioch Sci 6:195–197.

    Article  Google Scholar 

  9. Holloway SL, Glotzer M, King RW, Murray AW (1993) Anaphase is inactivated by proteolysis rather than by the inactivation of maturation promoting factor. Cell 73: 1393–1402.

    Article  PubMed  CAS  Google Scholar 

  10. Gould KL, Nurse P (1989) Tyrosine phosphorylation of the fission yeast cdc2+ protein kinase regulates entry into mitosis. Nature 342:39–45.

    Article  PubMed  CAS  Google Scholar 

  11. Gould KL, Moreno S, Owen DJ, et al. (1991) Phosphorylation at Thrl67 is required for Schizosaccharomyces pombe p34cdc2 function. EMBO J 11:3297–3309.

    Google Scholar 

  12. Russel P, Nurse P (1987) Negative regulation of mitosis by weel+, a gene encoding a protein kinase homolog. Cell 49:559–567.

    Article  Google Scholar 

  13. Parker LL, Atherton-Fessler S, Piwnica-Worms H (1992) pl07weel is a dual-specificity kinase that phosphorylates p34cdc2 on tyrosine 15. Proc Nat Acad Sci USA 89:2971–2921.

    Google Scholar 

  14. Russel P, Nurse P (1996) cdc25+ functions as an inducer in the mitotic control of fission yeast. Cell 45:145–153.

    Article  Google Scholar 

  15. Millar JBA, Russell P (1992) The cdc25 M-Phase inducer: An unconventional protein phosphatase. Cell 68:407–410.

    Article  PubMed  CAS  Google Scholar 

  16. Moreno S, Nurse P, Russell P (1990) Regulation of mitosis by cyclic accumulation of p80cdc25 mitotic inducer in fission yeast. Nature 344:549–552.

    Article  Google Scholar 

  17. Dunphy WG (1994) The decision to enter mitosis. TICB 4:202–207.

    CAS  Google Scholar 

  18. Sheldrick KS, Carr AM (1993) Feedback controls and G2 checkpoints: Fission yeast as a model system. BioEssays 15:775–782.

    Article  PubMed  CAS  Google Scholar 

  19. Novak B, Tyson JJ (1993) Numerical analysis of a comprehensive model of M-phase control in xenopus oocytes and intact embryos. J Cell Sci 4:1153–1168.

    Google Scholar 

  20. Solomon MJ, Lee T, Kirschner MW (1992) Role of phosphorylation in p34cdc2 activation: Identification of an activating kinase. Mol Biol Cell 3:13–27.

    PubMed  CAS  Google Scholar 

  21. Harper JW, Adami GR, Wei N, et al. (1993) The p21 cdk-interacting protein cipl is a potent inhibitor of Gl cyclin-dependent kinases. Cell 75:805–816.

    Article  PubMed  CAS  Google Scholar 

  22. El-Deiry WS, Tokino T, Velculescu VE, et al. (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825.

    Article  PubMed  CAS  Google Scholar 

  23. Serrano M, Hannon GL, Beach D (1993) A new regulatory motif in cell- cycle control causing specific inhibition of cyclin D/CDK4. Nature 366:704–707.

    Article  PubMed  CAS  Google Scholar 

  24. Xiong Y, Hannon GL, Zhang H, et al. (1993) p21 is a universal inhibitor of cyclin kinases. Nature 366: 701–704.

    Article  PubMed  CAS  Google Scholar 

  25. Xiong Y, Hannon GL, Zhang H, et al. (1993) Inhibition of CDK2 activity in vivo by associated 20K regulatory subunit. Nature 366:707–710.

    Article  Google Scholar 

  26. Pelech SL, Charest DL, Mordret GP, et al. (1993) Networking with mitogen-activated protein kinases. Molec Cell Biochem 127/128:157–169.

    Article  PubMed  Google Scholar 

  27. Ahn NG (1993) The MAP kinase cascade. Discovery of a new signal transduction pathway. Molec Cell Biochem 127/128:201–209.

    Article  PubMed  Google Scholar 

  28. Elion EA, Brill JA, Fink GR (1991) FUS3 represses CLN1 and CLN2 and in concert with KSS1 promotes signal transduction. Proc Nat Acad Sci U S A 88:9392–9396.

    Article  CAS  Google Scholar 

  29. Brewster JL, de Valoir T, Dwyer ND, et al. (1993) An osmosensing signal transduction pathway in yeast. Science 259:1760–1763.

    Article  PubMed  CAS  Google Scholar 

  30. La Thangue N (1993) Cell cycle-Transcriptional complexity. Current Biology 8:554–557

    Article  Google Scholar 

  31. Hall FL, Williams RT, Wu F, et al. (1993) Two potentially oncogenic cyclins, cyclin A and cyclin Dl, share common properties of subunit configuration, tyrosine phosphorylation and physical association with the Rb protein. Oncogene 8:1377–1384.

    PubMed  CAS  Google Scholar 

  32. Dulic V, Kaufmann WK, Wilson SJ, et al. (1994) p53 dependent inhibition of cyclin dependent kinase activated in human fibroblasts during radiation induced G1arrest. Cell 76:1013–1023.

    Article  PubMed  CAS  Google Scholar 

  33. Kamb A, Gruis NA, Weaver-Feldhaus J, et al. (1994) A cell cycle regulator potentially involved in genesis of many tumour types. Science 264:436–440.

    Article  PubMed  CAS  Google Scholar 

  34. Firpo EJ, Koff A, Solomon M, Roberts JM (1994) Inactivation of a cdk2 inhibitor during interleukin 2-induced proliferation of human T lymphocytes. Molec and Cell Biol 14: 4889–4901.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Carr, A.M. (1996). Cell Cycle Control. In: Li, J.J., Li, S.A., Gustafsson, JÅ., Nandi, S., Sekely, L.I. (eds) Hormonal Carcinogenesis II. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2332-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2332-0_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7506-0

  • Online ISBN: 978-1-4612-2332-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics