Skip to main content

Laser-Induced Spallation and Dynamic Fracture at Ultra High Strain Rate

  • Chapter
High-Pressure Shock Compression of Solids II

Part of the book series: High-Pressure Shock Compression of Condensed Matter ((SHOCKWAVE))

Abstract

Pulsed high irradiance laser induced shock waves are being used for assessing the dynamic fracture behavior of materials at extreme conditions. Theories [1, 2] have long predicted that very strong shock waves in the kbar-Mbar regime could be produced in small samples with pulsed lasers. Recent experiments have shown that this idea is not only a theoretical possibility, but also a practical way to obtain pressures and strain rates previously unachievable in a laboratory environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Trainor, R.J. and Lee, Y.T. Analytic models for design of laser generated shock-wave experiments Phys. Fluids 25, 1898–1907 (1982).

    Article  ADS  Google Scholar 

  2. Larson, A.R. Calculation of laser induced spall in aluminum targets, Los Alamos Lab. Report No. LA-5619-MS (1974).

    Book  Google Scholar 

  3. Eliezer, S., Loeb, A., Zigler, A., Arad, B., Ludmirsky, A., Gazit, Y., Jackel, S., Salzmann, D., Krumbein, A.D., Borowitz, J.L., Paiss, Y., Gilath, I., Szichman, H., and Givon, M. The evolution of strong shock waves produced by a trapezoidal laser pulse, in Laser Interaction and Related Plasma Phenomena, Edited by H. Hora and G. Miley (Plenum, New York), Vol. 7, pp. 279–288 (1986).

    Google Scholar 

  4. Loeb, A. and Eliezer, S. An analytical model for creation and decay of strong shock waves caused by a trapezoidal laser pulse, Phys. Fluids 28, 1196–1201 (1985).

    Article  MATH  ADS  Google Scholar 

  5. Arad, B., Borowitz, A., Eliezer, S., Gazit, Y., Gilath, I., Givon, M., Jackel, S., Krumbein, A.D., and Szichman, H. Measurement of shock waves generated by a trapezoidal laser pulse, Plasma Phys. Controlled Fusion 26, 845–852 (1984).

    Article  ADS  Google Scholar 

  6. Key, M.H. The physics of the superdense region. In Laser-Plasma Interaction, edited by R.A. Cairns and J.J. Sanderson, Publ. SUSSP, p. 219 (1980).

    Google Scholar 

  7. Boustie, M., Cottet, F., and Chauveau, Y. Spalling of aluminum and copper targets by laser shocks p. 741, in Shock-wave and high strain rate phenomena in materials, edited by M.A. Meyers, L.E. Murr, and K.P. Standhammer, Marcel Dekker, New York, 1992.

    Google Scholar 

  8. Harrach, R.J., Lee, Y.T., Trainor, P.J., Holmes, N.C., Rosen, M.D., Banner, D.L., and Olness, R.J. Livermore National Lab. (U.S.A.) preprint UCRL— 86301, 1981.

    Google Scholar 

  9. Thompson, P.C. and Roberts, P.D. Laser Particle Beams, 2, 13 (1984).

    Article  Google Scholar 

  10. Bauer, F. Metrologie d’ondes de choc a l’aide de polymers piezoelectriques. J. Physique IV, C3, 427–433 (1991).

    Google Scholar 

  11. Paisley, D.L. Laser driven miniature plates for one-dimensional impacts at 0.5-≥6 km/5, p. 1131–1141. In Shock wave and high strain rate phenomena in materials, edited by M.A. Mayers, L.E. Murr, and K.P. Standhammer, Marcel Dekker, New York, 1992.

    Google Scholar 

  12. Fabbro, R. Physical study of laser produced plasma in confined geometry, J. Appl Phys. 68, 783–784 (1990).

    Article  ADS  Google Scholar 

  13. Christiansen, J.P., Ashby, D.E., and Roberts, K.V., Comp. Phys. Commun. 7, 271 (1974).

    Article  ADS  Google Scholar 

  14. Eliezer, S., Gilath, I., and Bar-Noy, T. Laser induced spall in metals, Experiment and simulation, J. Appl. Phys. 67, 715–724 (1990).

    Article  ADS  Google Scholar 

  15. Fortov, V.E., Kostin, V.V., and Eliezer, S. Spallation of metals under laser irradiation, J. Appl. Phys. 70, 4524–4531 (1991).

    Article  ADS  Google Scholar 

  16. Cottet, F., Ng, A., Da Silva, L., and Marty, L. Spallation under the action of a laser induced shock wave, J. Physique, 49, C3, 419–424 (1988).

    Google Scholar 

  17. Tuler, F.R., and Butcher, B.M. Int. J. Fracture Mechan. 6, 431 (1968).

    Google Scholar 

  18. Gilath, I., Salzman, D., Givon, M., Dariel, M.P., Kornblith, L., and Bar-Noy, T. Spallation as an effect of laser induced shock waves, J. Mat. Sci. 23, 1825–1828 (1988).

    Article  ADS  Google Scholar 

  19. Gilath, I., Eliezer, S., Dariel, M.P., and Kornblith, L. Total elongation at fracture at ultra-high strain rates, J. Mat. Sci. Lett. 7, 915–917 (1988).

    Article  Google Scholar 

  20. Gilath, I., Eliezer, S., Dariel, M.P., Kornblith, L., and Bar-Noy, T. Laser induced spall in aluminum and copper, J. Physiques C3, 49, 191–197 (1988).

    Google Scholar 

  21. Gilath, I., Eliezer, S., Dariel, M.P., and Kornblith, L. Brittle-to-ductile transition in laser-induced spall at ultra high strain rate in the 6061-T6 aluminum alloy, Appl. Phys. Lett 52, 1207–1209 (1988).

    Article  ADS  Google Scholar 

  22. Salzmann, D., Gilath, I., Givon, M., and Bar Noy, T. Measurement of the tensile strength of aluminum at a strain rate of 2 × 107 s-1, J. Phys. D., Appl. Phys. 22, 1271–1274(1989).

    Article  ADS  Google Scholar 

  23. Salzman, D., Gilath, I., and Arad, B. Experimental measurements of the conditions for the planarity of laser-driven shock waves, Appl. Phys. Lett. 52, 1128–1129(1988).

    Article  ADS  Google Scholar 

  24. Gilath, I., Eliezer, S., and Bar-Noy, T. Hemispherical shock wave decay in laser matter interaction. Laser Particle Beams. In press.

    Google Scholar 

  25. Zukas, A., Nichols, T., Swift, H.F., Gresczuk, L.B., and Curran, D.R. Impact Dynamics John Wiley, New York, 1982.

    Google Scholar 

  26. Eliezer, S., Gazit, Y., and Gilath, I. Shock wave decay and spall strength in laser-matter interaction, J. Appl. Phys. 68, 356–358 (1990).

    Article  ADS  Google Scholar 

  27. Grady, D.E. Spall strength of condensed matter. J. Mech. Phys. Solids 36, 353–384 (1988).

    Article  ADS  Google Scholar 

  28. Gilath, I., Eliezer, S., and Shkolnik, S. Spall behavior of carbon epoxy unidirectional composites as compared to aluminum and iron, J. Compos. Mat. 24, 1138–1151(1990).

    Article  Google Scholar 

  29. Gilath, I., Eliezer, S., and Weisshaus, H. Damage in 2D Carbon-Carbon Composites by short pulsed laser induced shock waves. J. Reinforced Plastics Composites 8, 259–269 (1989).

    Article  ADS  Google Scholar 

  30. Gilath, I., Eliezer, S., and Gazit, Y. Fracture modes in alumina at hypervelocity impact conditions, J. Mat. Sci. 26, 2023–2025, (1991).

    Article  ADS  Google Scholar 

  31. Gilath I., Eliezer, S., Gazit, Y., and Barnea, N. Low and high strain rate experiments on model Kevlar-Epoxy microcomposites, J. Reinforced Plastics Composites 10, 84–90 (1991).

    Article  ADS  Google Scholar 

  32. Gilath, I., Englman, R., Jaeger, Z., Buchman, A., and Dodiuk, H. Impact resistance of adhesive joints using laser induced shock waves, Int. J. Adhesion Adhesives. In press.

    Google Scholar 

  33. Hill, D.C., Stevenson, T.J., and Zarnechi, J.C. Application of laser simulation of hypervelocity impacts to space particulate damage to metals and optical glasses. In: Proceedings of the fourth Intern Conf. on Spacecraft materials in space environment, Toulouse, France, 1988.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Gilath, I. (1996). Laser-Induced Spallation and Dynamic Fracture at Ultra High Strain Rate. In: Davison, L., Grady, D.E., Shahinpoor, M. (eds) High-Pressure Shock Compression of Solids II. High-Pressure Shock Compression of Condensed Matter. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2320-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2320-7_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7501-5

  • Online ISBN: 978-1-4612-2320-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics