Skip to main content

Part of the book series: High-Pressure Shock Compression of Condensed Matter ((SHOCKWAVE))

Abstract

Spall fracture (spallation) is a particular kind of dynamic fracture that results from the tension produced by the interaction of propagating waves of rarefaction. Such waves can be caused by the impact of a projectile (flyer) onto the surface of a structure (target) [1], the detonation of a high explosive in direct contact with the target [2], or by sudden deposition of an intense pulse of energy on the target surface [3]. More specifically, in the case of plate impact, the initial compressive stress wave travelling across the target reflects back at the free surface as a propagating decompression wave. A similar process, oppositely directed, occurs in the thinner flyer plate. The superposition of the reflected decompression wave fronts, if sufficient intensity and time duration, can cause partial or complete separation of the material along a plane perpendicular to the direction of the traveling wave fronts, cf. Figure 15.1, [4–6]. Spallation as a particular manifestation of dynamic fracture and fragmentation in general, has been the subject of considerable investigation, particularly at the Stanford Research Institute [7–13], and at the Sandia National Laboratories, [14–18]. Review articles on spall and dynamic fracture by Meyers and Aimone [19], and by Curran, Seaman and Shockey [20], provide access to much of the extensive literature on the subject.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Curran, D.R. Dynamic fracture, in: Impact Dynamics, 333–366, J. Zukas et al. [eds.], J. Wiley, New York (1982).

    Google Scholar 

  2. Rinehart, J.S. and Pearson, J. Behavior of metals under impulsive loads, American Society for Metals, 1954, Dover Pub., New York (1965).

    Google Scholar 

  3. Gilath, I. and Eliezer, S. Pulsed laser induced spall, a new method to study dynamic properties, Advances in Plasticity, 393–396 (1989), A.H. Khan and M. Tokuda [eds.], Pergamon Press, Oxford (1989).

    Google Scholar 

  4. Butcher, B.M., Barker, L.M., Munson, D.E., and Lundergan, CD. Influence of stress history on time-dependent spall in metals, AIAA J., 2, 977–990 (1964).

    Article  Google Scholar 

  5. Tuler, F.R. and Butcher, B.M. A criterion for the time dependence of dynamic fracture, Int. J. Fract., 4, 431–437 (1968).

    Article  Google Scholar 

  6. Gilman, J.J. and Tuler, F.R. Dynamic fracture by spallation in metals, Int. J. Fract., 6, 169–182(1970).

    Article  Google Scholar 

  7. Barbee, T.W., Seaman, L., Crowden, R., and Curran, D.R. Dynamic fracture criteria for ductile and brittle metals, J. Mater., 7, 393–401 (1972).

    Article  Google Scholar 

  8. Seaman, L., Shockey, D.A., and Curran, D.R. The growth law for crack propagation under shock conditions, in: Dynamic Crack Propagation, 629–647, G.H. Sih [ed.], Noordhoff, Leyden (1973).

    Google Scholar 

  9. Seaman, L., Curran, D.R., and Shockey, D.A. Computational models for ductile and brittle fracture, J. Appl. Phys., 47, 4814–4826 (1976).

    Article  ADS  Google Scholar 

  10. Curran, D.R., Seaman, L., and Shockey, D.A. Dynamic failure in solids, Physics Today, 46–55 (January 1977).

    Google Scholar 

  11. Shockey, D.A., Seaman, L., and Curran, D.R. Microfailure models and their application to nonlinear dynamic fracture problems, in: Nonlinear and Dynamic Fracture Mechanics, ASME, Appl. Mech. Div. 35, 79–104 (1979).

    Google Scholar 

  12. Seaman, L., Curran, D.R., and Murri, W.J. A continuum model for dynamic tensile microfracture and fragmentation, J. Appl. Mech., 52, 593–600 (1985).

    Article  ADS  Google Scholar 

  13. Shockey, D.A., Seaman, L., and Curran, D.R. The micro-statistical fracture mechanics approach to dynamic fracture problems, Int. J. Fracture, 27, 145–157 (1985).

    Article  Google Scholar 

  14. Davison, L. and Stevens, A.L. Continuum measures of spall damage, J. Appl. Phys., 43, 944–988 (1972).

    Article  Google Scholar 

  15. Davison, L. and Stevens, A.L. Thermomechanical constitution of spalling elastic bodies, J. Appl. Phys., 44, 668–674 (1973).

    Article  ADS  Google Scholar 

  16. Davison, L., Stevens, A.L., and Kipp, M.E. Theory of spall damage accumulation in ductile metals, J. Mech. Phys. Solids, 25, 11–28 (1977).

    Article  ADS  Google Scholar 

  17. Davison, L. and Kipp, M.E. Calculation of spall damage accumulation in ductile metals, in: High Velocity Deformation of Solids, 163–175, K. Kawata and J. Shiori [eds.], Springer-Verlag, New York (1978).

    Google Scholar 

  18. Grady, D.E. The spall strength of condensed matter, J. Mech. Phys. Solids, 36, 353–384 (1988).

    Article  ADS  Google Scholar 

  19. Meyers, M.A. and Aimone, C.T. Dynamic fracture (spalling) of metals, Prog, in Mater. Sci., 28, 1–96 (1983).

    Google Scholar 

  20. Curran, D.R., Seaman, L., and Shockey, D.A. Dynamic failure of solids, Phys. Reports, 147, 253–388 (1987).

    Article  ADS  Google Scholar 

  21. Barker, L.M. and Hollenbach, R.E. Laser interferometer for measuring high velocities of any reflecting surface, J. Appl. Phys., 43, 4669–4674 (1972).

    Article  ADS  Google Scholar 

  22. Davison, L. and Graham, R.A. Shock compression of solids, Physics Reports, 55, No. 4, 255–379 (1979).

    Article  ADS  Google Scholar 

  23. Mackenzie, J.H. The elastic constants of a solid containing spherical holes, Proc. Phys. Soc. (London), B, 63, 2–11 (1950).

    Article  ADS  Google Scholar 

  24. Johnson, J.N. Dynamic fracture and spallation in ductile solids, J. Appl. Phys., 53, 812–2825(1981).

    Google Scholar 

  25. Perzyna, P. The constitutive equations for rate sensitive plastic materials, Quart. Appl. Math., 20, 321–332 (1963).

    MathSciNet  MATH  Google Scholar 

  26. Perzyna, P. Internal state variable description of dynamic fracture of ductile solids, Ind. J. Solids Struct., 22, 797–818 (1986).

    Article  Google Scholar 

  27. Shima, S. and Oyane, M. Plasticity for porous solids, Int. J. Mech. Sci., 18, 285–291 (1976).

    Article  Google Scholar 

  28. Hancock, J.W. Plasticity of porous metals, in: Yield, Flow and Fracture of Polycrystals, 69–79, T.N. Baker [ed.], Appl. Science Pub., Essex (1983).

    Google Scholar 

  29. Doraivelu, S.M., Gegel, H.L., Gunasekera, J.S., Malas, J.C., Morgan, J., and Thomas, J.S. A new yield function for compressible P/M materials, Int. J. Mech. Sci., 26, 527–535 (1984).

    Article  Google Scholar 

  30. Nemes, J.A., Eftis, J., and Randies, P.W. Viscoplastic constitutive modeling of high strain-rate deformation, material damage, and spall fracture, Trans. ASME J. Appl. Mech., 57, 282–291 (1990).

    Article  ADS  Google Scholar 

  31. Perzyna, P. Constitutive modeling of dissipative solids for postcritical behavior and fracture, ASME J. Engng. Materials Tech., 106, 410–419 (1984).

    Article  Google Scholar 

  32. Raj, R. and Ashby, M.F. Intergranular fracture at elevated temperature, Acta Metallurgica. 23, 653–666 (1975).

    Article  Google Scholar 

  33. Ashby, M.F. and Verall, R.A. Diffusion-accommodated flow and superplasticity, Acta Metallurgica. 21, 149–163 (1973).

    Article  Google Scholar 

  34. Eftis, J. and Nemes, J.A. Evolution equation for the void volume growth rate in a viscoplastic-damage constitutive model, Int. J. Plasticity, 7, 275–293 (1991).

    Article  MATH  Google Scholar 

  35. Carroll, M.M. and Holt, A.C. Static and dynamic pore collapse relations for ductile solids, J. Appl. Phys., 46, 1626–1636 (1972).

    Article  ADS  Google Scholar 

  36. Nemes, J.A. A viscoplastic description of high strain-rate deformation, material damage and spall fracture, DSc. Dissertation, George Washington Univ., Washington, D.C. (1989).

    Google Scholar 

  37. Eftis, J., Nemes, J.A., and Randies, P.W. Viscoplastic analysis of plate-impact spallation, Int. J. Plasticity, 7, 15–39 (1991).

    Article  MATH  Google Scholar 

  38. Nemes, J.A. and Eftis, J. Pressure-shear waves and spall fracture described by a viscoplastic-damage constitutive model, Int. J. Plasticity, 8, 185–207 (1992).

    Article  MATH  ADS  Google Scholar 

  39. Nemes, J.A. and Eftis, J. Low-angle oblique impact spall fracture using viscoplastic constitutive theory, in: Advances in Constitutive Laws for Engineering Materials, Vol. II, 633–639, Int. Acad. Pub., Beijing (1989).

    Google Scholar 

  40. Nemes, J.A. and Eftis, J. Several features of a viscoplastic study of plate-impact spallation with multi-dimensional strain, Computers and Structures, 38, 317–328 (1991).

    Article  MATH  Google Scholar 

  41. Eftis, J. and Nemes, J.A. Modeling of impact-induced spall fracture and post spall behavior of a circular plate, Int. J. Fracture, 53, 301–324 (1992).

    Article  Google Scholar 

  42. Flanagan, D.P. and Taylor, L.M. An accurate numerical algorithm for stress integration with finite rotations, Computer Methods in Appl. Mechanics and Engineering, 62, 305–320 (1987).

    Article  MATH  ADS  Google Scholar 

  43. Johnson, G.C. and Bammann, D.J. A discussion of stress rates in finite deformation problems, Int. J. Solids and Structures, 20, 725–757 (1984).

    Article  MATH  Google Scholar 

  44. Kipp, M.E. and Lawrence, R.J. WONDY-V, A one-dimensional finite difference wave propagation code, SAND 81–0594, Sandia Laboratories, Albuquerque (1982).

    Google Scholar 

  45. Taylor, L.M. and Flanagan, D.P. PRONTO 2D, A two dimensional transient solid dynamics program, SAND 86–0594, Sandia Laboratories, Albuquerque (1987).

    Book  Google Scholar 

  46. Herrmann, W. Nonlinear stress waves in metals, in: Wave Propagation in Solids, 129–183, ASME, New York (1969).

    Google Scholar 

  47. Rajendran, A.M., Grove, D.J., and Bless, S.J. A new yield function based dynamic failure model, in: Shock Waves in Condensed Matter—1987, S.C. Schmidt and N.C. Holmes, eds. Elsevier, Amsterdam (1988).

    Google Scholar 

  48. Valanis, K.C. On the uniqueness of solution of the initial value problem in softening materials, J. Appl. Mech., 52, 649–653 (1985).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  49. Rice, J.R. The localization of plastic deformation, in: Theoretical and Appl. Mechanics, 207–220, W.T. Koiter, ed., North Holland Pub. (1976).

    Google Scholar 

  50. Abou-Sayed, A.S., Clifton, R.J., and Hermann, L. The oblique-plate impact experiment, Exp. Mech., 16, 127–133 (1976).

    Article  Google Scholar 

  51. Abou-Sayed, A.S. and Clifton, R.J. Analysis of combined pressure-shear waves in an elastic/viscoplastic material. J. Appl Mech., 44, 70–84 (1977).

    Google Scholar 

  52. Kim, K.S. and Clifton, R.J. Pressure-shear impact of 6061-T6 aluminum, J. Appl. Mech., 47, 11–16 (1980).

    Article  ADS  Google Scholar 

  53. Klopp, R.W., Clifton, R.J., and Shawki, T.G. Pressure-shear impact and the dynamic viscoplastic response of metals, Mech. Materials, 4, 375–385 (1985).

    Article  Google Scholar 

  54. Gilat, A. and Clifton, R.J. Pressure-shear waves in 6061-T6 aluminum and alpha-titanium J. Mech. Phys. Solids, 33, 263–284 (1985).

    Article  ADS  Google Scholar 

  55. Smith, J.H. Three low pressure spall thresholds in copper, in: Dynamic Behavior of Materials, 264–282, ASTM, Philadelphia (1963).

    Chapter  Google Scholar 

  56. Nemes, J.A. and Eftis, J. Use of viscoplastic constitutive theory for simulating spallation thresholds, in: Shock Waves in Condensed Matter, 369–372, (1989), S.C. Schmidt, et al., [eds.], Elsevier Sci. Pub., Amsterdam (1990).

    Google Scholar 

  57. Carroll, M.M., Kim, K.T., and Nesterenko, V.F. The effect of temperature on viscoplastic pore collapse, J. Appl. Phys. 59, 1962–1967 (1986).

    Article  ADS  Google Scholar 

  58. Hopkinson, B. A method of measuring the pressure produced in the deterioration of high explosives or by the impact of bullets, Proc. Roy. Soc, London 213A, 437–456, (1914).

    ADS  Google Scholar 

  59. Hopkinson, B. Scientific Papers, Cambridge Univ. Press, London (1910).

    Google Scholar 

  60. Rinehart, J.S., Some quantitative data bearing on the scabbing of metals under explosive attack, J. Appl. Phys., 22, 5, 555–560 (1951).

    Article  ADS  Google Scholar 

  61. Rinehart, J.S. Scabbing of metals under explosive attack: Multiple scabbing, J. Appl. Phys., 23, 11, 1229–1233 (1952).

    Article  ADS  Google Scholar 

  62. Blincow, D.W. and Keller, D.V. Experiments on the mechanism of spall, in: Dynamic Behavior of Materials, 252–263, American Society for Testing Materials, Philadelphia, PA (1963).

    Chapter  Google Scholar 

  63. Steinberg, D.J. and Sharp, R.W. Interpretation of shock-wave data for beryllium and uranium with an elastic-viscoplastic constitutive model, J. Appl. Phys., 52, 8, 5073–5083 (1981).

    Article  ADS  Google Scholar 

  64. Steinberg, D.J. Constitutive model used in computer simulation of time-resolved, shock-wave data, Int. J. Impact Engng., 5, 603–611 (1987).

    Article  Google Scholar 

  65. Cochran, S. and Banner, D. Spall studies in uranium, J. Appl. Phys., 48, 7 2729–2737 (1977).

    Article  ADS  Google Scholar 

  66. Lee, E.H. Finite-strain elastic-plastic theory with application to plane wave analysis, J. Appl. Phys., 38, 1, 19 (1967).

    Article  ADS  Google Scholar 

  67. Lee, E.H. Analysis of the propagation of plane elastic-plastic waves at finite strain, J. Appl. Mech., Trans. ASME, 932 (1967).

    Google Scholar 

  68. Rajendran, A.M., Grove, D.J., and Bless, S.J. A new yield function based dynamic failure model, in: Shock Waves in Condensed Matter, 359–362 (1987), S.C. Schmidt and N.C. Holmes [edts.], Elsevier, Amsterdam.

    Google Scholar 

  69. Rajendran, A.M., Dietenberger, M.A., and Grove, D.J. A void growth-based failure model to describe spallation, J. Appl. Phys., 65, 4, 1521–1527 (1989).

    Article  ADS  Google Scholar 

  70. Bodner, S.R. and Partom, Y. Constitutive equations for elastic-viscoplastic strain-hardening materials, J. Appl. Mech., 42, 385–389 (1975).

    Article  ADS  Google Scholar 

  71. Chu, C.C. and Needleman, A. Void nucleation effects in biaxially stretched sheets, J. Eng. Mater. Tech., 102, 249–256 (1980).

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Eftis, J. (1996). Constitutive Modelling of Spall Fracture. In: Davison, L., Grady, D.E., Shahinpoor, M. (eds) High-Pressure Shock Compression of Solids II. High-Pressure Shock Compression of Condensed Matter. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2320-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2320-7_15

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7501-5

  • Online ISBN: 978-1-4612-2320-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics