Skip to main content

Simplified Models of Fracture and Fragmentation

  • Chapter
High-Pressure Shock Compression of Solids II

Part of the book series: High-Pressure Shock Compression of Condensed Matter ((SHOCKWAVE))

Abstract

Current engineering models of fracture and fragmentation usually rely almost exclusively on analytical fits to empirical “field data,” so it is necessary to generate a new data set for each new application. We will not discuss such models here, even though they have proven very useful in the weapons effects community. Instead, we will concentrate on emerging physics-based models that, at least to some degree, describe the nucleation of damage at weak spots in the material, the growth of the damage with associated material softening, and the ultimate coalescence of the damage to form a fragment size and velocity distribution. The input to such models is based on material properties measured in the laboratory, and the models therefore hold the promise of being much less dependent on expensive (and sometimes unobtainable) field data than are the current engineering models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Curran, D.R., Seaman, L., and Shockey, D.A. Physics Rep. 147(5&6) (1987).

    Google Scholar 

  • Curran, D.R. and Seaman, L. In Shock Compression of Condensed Matter 1991, S.C. Schmidt, R.D. Dick, J.W. Forbes, and D.G. Tasker, Eds., pp. 395–398, Elsevier Science Publishers B.V. (1992).

    Google Scholar 

  • Desai, C.S., Krempl, E., Frantziskonis, G., and Saadatmanesh, H. Eds. Constitutive Relations for Engineering Materials, ASME Press (1991).

    Google Scholar 

  • Deve, H., Harren, S., McCullough, C, and Asaro, R.J. Acta Metall. 36(2), 341–365 (1988).

    Article  Google Scholar 

  • Dullum, O. and Seaman, L. Simulations of Projectile Penetrations with a Shear Banding Model, Poulter Laboratory Technical Report 004–84, SRI International (1985).

    Google Scholar 

  • Englmen, R., Rivier, N., and Jaeger A. Phil. Mag. B56, 751 (1987).

    Google Scholar 

  • Erlich, D.C., Seaman, L., Caligiuri, R.D., and Curran, D.R. SRI International Annual Report to the Ballistic Research Laboratory and the Army Materials and Mechanics Research Center, Contract No. DAAK11–78-C-0115 (1980).

    Google Scholar 

  • Grady, D.E. and Kipp, M.E. J. Appl. Phys. 58, p. 1210 (1985).

    Article  ADS  Google Scholar 

  • Grady, D.E. and Kipp, M.E. J. Mech. Phys. Solids 1, 95–118 (1987).

    Article  ADS  Google Scholar 

  • Grady, D.E. J. Mech. Phys. Solids 36(3), pp. 353–384 (1988).

    Article  ADS  Google Scholar 

  • Harren, S.V. and Asaro, R.J. J. Mech. Phys. Solids, 37(2), 191–232 (1989).

    Article  MATH  ADS  Google Scholar 

  • Meyers, M.A., Vecchio, K.S., and Andrada, U. Proceedings of Symposium on Shear Bands and Viscoplastic Theories, University of California at San Diego, La Jolla, CA, September 14–19, 1992, to be published as a separate volume of the Mechanics of Materials (1993).

    Google Scholar 

  • Mott, N.F. Proc. Roy. Soc. London A 189, pp. 300–308 (1947).

    Article  ADS  Google Scholar 

  • Nemat-Nasser, S. and Horii, M. Micromechanics: Overall Properties of Heterogeneous Materials, North-Holland, Amsterdam (1993).

    MATH  Google Scholar 

  • Peirce, D., Asaro, R.J., and Needleman, A. Acta Metall. 31, 1951 (1983).

    Article  Google Scholar 

  • Shockey, D.A., Seaman, L., and Curran, D.R. Final Technical Report to the Air Force Weapons Laboratory, Report No. AFWL-TR-73–12, Contract No. F29601–70-C-0070 (1973).

    Google Scholar 

  • Sneddon, I.N. and Lowengrub, M. Crack Problems in the Classical Theory of Elasticity, John Wiley & Sons, New York (1969).

    MATH  Google Scholar 

  • Whitham, G.B. (1959), Communications on Pure and Applied Mathematics, Vol. XII, p. 113.

    Article  MathSciNet  Google Scholar 

  • Whitham, G.B. Linear and Nonlinear Waves, John Wiley & Sons, New York (1974).

    MATH  Google Scholar 

  • Zukas, J.A., Nicholas, T., Swift, H.F., Greszczuk, L.B., and Curran, D.R. Impact Dynamics, John Wiley & Sons, New York (1982).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Curran, D.R., Seaman, L. (1996). Simplified Models of Fracture and Fragmentation. In: Davison, L., Grady, D.E., Shahinpoor, M. (eds) High-Pressure Shock Compression of Solids II. High-Pressure Shock Compression of Condensed Matter. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2320-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2320-7_13

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7501-5

  • Online ISBN: 978-1-4612-2320-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics