Skip to main content

Experimental and Numerical Studies of High-Velocity Impact Fragmentation

  • Chapter

Part of the book series: High-Pressure Shock Compression of Condensed Matter ((SHOCKWAVE))

Abstract

Some basic theories have emerged within the past 10 years for predicting the consequences of dynamic fragmentation brought about by high-velocity impact or explosive events. These theories have focused principally on the prediction of mean fragment size through energy and momentum balance principles (e.g. Grady, 1982; Kipp and Grady, 1985; Grady, 1988; Glenn and Chudnovsky, 1986) and on the statistical issues of fragment size distributions (e.g. Brown, 1989; Englman, et al., 1984; Grady and Kipp, 1985; Grady, 1990). This theoretical basis has provided the underlying framework for a number of computational algorithms employed to analyze complex fragmentation events (e.g. Johnson, et al., 1990; Melosh, et al., 1992; Smith, 1989).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ang, J.A. Sandia National Laboratories, Personal communication (1992).

    Google Scholar 

  • Backman, M.E. and Goldsmith, W. The mechanics of penetration of projectiles and targets. Int. J. Engng. Sci. 16, 1–99 (1978).

    Article  Google Scholar 

  • Backman, M.E. and Finnegan S.A. A phenomenological investigation of the impact of compact projectiles against plates at speeds up to 3 km/s. Proceedings of Eighth International Symposium on Ballistics, October 23–25, 1984, Orlando, Florida.

    Google Scholar 

  • Bertholf, L.D., Buxton, L.D., Thorne, B.J., Byers, R.K., Stevens, A.L., and Thompson, S.L. Damage in steel plates from hypervelocity impact. II. Numerical results and spall measurement. J. Appl. Phys. 46, 3776–3782 (1975).

    Article  ADS  Google Scholar 

  • Brown, W.K. J. Astrophys. Astr. 10, 89–112 (1989).

    Article  ADS  Google Scholar 

  • Cour-Palais, B.G. Hypervelocity impact in metals, glass, and composites. Int. J. Impact Engng. 5, 221–237 (1987).

    Article  Google Scholar 

  • Englman, R., Jaeger, Z., and Levi, A. Percolation theoretical treatment of two-dimensional fragmentation in solids. Phil. Mag. B 50, 307–315 (1984).

    Google Scholar 

  • Glenn, L.A. and Chudnovsky A. Strain energy effects on dynamic fragmentation. J. Appl. Phys. 59, 1379–1380 (1986).

    Article  ADS  Google Scholar 

  • Grady, D.E. Local inertia effects in dynamic fragmentation. J. Appl. Phys. 53, 322–325 (1982).

    Article  ADS  Google Scholar 

  • Grady, D.E. Fragmentation of rapidly expanding jets and sheets. Int. J. Impact Engng. 5, 285–292 (1987).

    Article  Google Scholar 

  • Grady, D.E. The spall strength of condensed matter. J. Mech. Phys. Solids 36, 353–384 (1988).

    Article  ADS  Google Scholar 

  • Grady, D.E. Particle size statistics in dynamic fragmentation. J. Appl. Phys. 68, 6099–6105 (1990).

    Article  ADS  Google Scholar 

  • Grady, D.E. and Kipp, M.E. Geometric statistics and dynamic fragmentation. J. Appl. Phys. 58, 1210–1222 (1985).

    Article  ADS  Google Scholar 

  • Grady, D.E. and Kipp, M.E. Fragmentation of solids under dynamic loading. In: Structural Failure T. Wierzbicki and N. Jones (Eds.), John Wiley & Sons, New York (1989).

    Google Scholar 

  • Grady, D.E. and Kipp, M.E. Experimental and Computational Simulation of the High-Velocity Impact of Copper Spheres on Steel Plates. Int. J. Impact Engng. 15, 645–660 (1994).

    Article  Google Scholar 

  • Grady, D.E. and Passman, S.L. Stability and fragmentation of ejecta in hypervelocity impact. Int. J. Impact Engng. 10, 197–212 (1990).

    Article  Google Scholar 

  • Grady, D.E., Dunn, J.E., Wise, J.L., and Passman, S.L. Analysis of prompt fragmentation. Sandia National Laboratories Report, SAND90–2015 (1990a).

    Google Scholar 

  • Grady, D.E., Swegle, J.W., and Ang, J.A. Analysis of prompt fragmentation Oct. 89-Sept. 90. SAND91–0483 (1990b).

    Google Scholar 

  • Herrmann, W. and Wilbeck, J.S. Review of hypervelocity penetration theories. Int. J. Impact Engng. 5, 307–322 (1987).

    Article  Google Scholar 

  • Hertel, E.S., Jr. A comparison of the CTH Hydrodynamics Code with experimental data. Sandia National Laboratories Report, SAND92–1879 (1992).

    Google Scholar 

  • Hohler, V. and Stilp, A.J. Hypervelocity impact of rod projectiles with L/D from 1 to 32. Int. J. Impact Engng. 5, 323–331 (1987).

    Article  Google Scholar 

  • Johnson, W.A. and Mehl, R.F. Reaction kinetics in processes of nucleation and growth. Trans. A. I. M. M. E. 135, 416–458 (1939).

    Google Scholar 

  • Johnson, J.N. and Addessio, F.L. Tensile plasticity and ductile fracture. J. Appl. Phys. 64, 6699–6712 (1988).

    Article  ADS  Google Scholar 

  • Johnson, G.R, Stryk, R.A., Holmquist, T.J., and Souka, O.A. Recent EPIC Code developments for high velocity impact: 3D element arrangements and 2D fragment distributions. Int. J. Impact Engng. 10, 281–294 (1990).

    Article  Google Scholar 

  • Kipp, M.E. and Grady, D.E. Dynamic fracture growth and interaction in one dimension. J. Mech. Phys. Solids 33, 399–415 (1985).

    Article  ADS  Google Scholar 

  • Kipp, M.E., Grady, D.E., and Swegle, J.W. Experimental and numerical studies of high-velocity impact fragmentation. Sandia National Laboratories Report SAND93–0773, August (1993a).

    Book  Google Scholar 

  • Kipp, M.E., Grady, D.E., and Swegle, J.W. Numerical and experimental studies of high-velocity impact fragmentation. Int. J. Impact Engng. 14, 427–438 (1993b).

    Article  Google Scholar 

  • McGlaun, J.M., Thompson, S.L., and Elrick, M.G. CTH: a three-dimensional shock wave physics code. Int. J. Impact Engng. 10, 351–360 (1990).

    Article  Google Scholar 

  • Melosh, H.J., Ryan, E.V., and Asphaug, E. Dynamic fragmentation in impacts: hydrocode simulation of laboratory impacts. J. Geophys. Res.Planets, 97, No. E9 (1992).

    Google Scholar 

  • Piekutowski, A.J. Properties of largest fragment produced by hypervelocity impact of aluminum spheres with thin aluminum sheets, AIAA 92–1588, AIAA Space Programs and Technologies Conference, March 24–27, 1992, Huntsville, Alabama.

    Google Scholar 

  • Romero, L. The instability of rapidly stretching jets. J. Appl. Phys. 65, 3006–3016 (1989).

    Article  ADS  Google Scholar 

  • Schuler, K.W. and Nunziato, J.W. The dynamic mechanical behavior of polymethyl methacrylate. Rheol. Acta 13, 265–273 (1974).

    Article  Google Scholar 

  • Smith, V. Kaman Sciences Corporation, Personal communication (1989).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Kipp, M.E., Grady, D.E. (1996). Experimental and Numerical Studies of High-Velocity Impact Fragmentation. In: Davison, L., Grady, D.E., Shahinpoor, M. (eds) High-Pressure Shock Compression of Solids II. High-Pressure Shock Compression of Condensed Matter. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2320-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2320-7_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7501-5

  • Online ISBN: 978-1-4612-2320-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics