Skip to main content

31P-MRS of Muscle Physiology

  • Chapter
Muscle Imaging in Health and Disease

Abstract

The primary function of skeletal muscle is to convert the chemical energy in food to the kinetic energy of motion. Without a properly functioning skeletal muscle system, we could not perform most of the activities necessary to sustain life. In performing this basic function, skeletal muscle exhibits its most distinctive characteristic: a large metabolic dynamic range. Unlike most tissues in the body, the metabolic rate of resting skeletal muscle is very low. During exercise, however, its metabolic rate increases greatly, and during peak exercise it can be almost two orders of magnitude greater than it is during rest. This differentiates skeletal muscle from all the other tissues of the body and makes it an attractive subject of study by 31P magnetic resonance spectroscopy (31P-MRS). This chapter will focus on two of the most commonly used applications of 31P-MRS: (1) monitoring energy metabolism during the transition from rest to exercise and (2) using these measurements to understand the underlying biochemistry and physiology of skeletal muscle in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jacobus WE, Moreadith RW, Vandegaer KM. Mitochondrial respiratory control. J Biol Chem 1982;257: 2397–2402.

    PubMed  CAS  Google Scholar 

  2. Cady EB. Absolute quantitation of phosphorus metabolites in the cerebral cortex of the newborn human infant and in the forearm muscles of young adults using a double-tuned surface coil. J Magn Reson 1990;87:433–446.

    Article  CAS  Google Scholar 

  3. Shapiro JI, Chan L. In vivo determination of absolute molar concentrations of renal phosphorus metabolites using the proton concentration as an internal standard. J Mag Reson 1987;75:125–128.

    Article  CAS  Google Scholar 

  4. Wray S, Tofts PS. Direct in vivo measurement of absolute concentrations using 31P nuclear magnetic resonance spectroscopy. Biochim Biophys Acta 1986;886:399–405.

    Article  PubMed  CAS  Google Scholar 

  5. Wray S, Wilkie DR. Quantitation of metabolites in NMR spectra from isolated tissues, using 15N spectroscopy and nitrate to determine tissue volume. NMR Biomed 1992;5: 137–141.

    Article  PubMed  CAS  Google Scholar 

  6. Dawson MJ, Gadian DG, Wilkie DR. Contraction and recovery of living muscles studied by 31P nuclear magnetic resonance. J Physiol (Lond) 1977;267:703–735.

    CAS  Google Scholar 

  7. Hoult DI, Busby SJW, Gadian DG, Radda GK, Richards RE, Seeley PJ. Observation of tissue metabolites using 31P nuclear magnetic resonance. Nature 1974;252:285–287.

    Article  PubMed  CAS  Google Scholar 

  8. Meyer RA, Kushmerick MJ, Brown TR. Application of 31P-NMR spectroscopy to the study of striated muscle metabolism. Am J Physiol 1982;242:C1–C11.

    PubMed  CAS  Google Scholar 

  9. Argov ZJ, Maris J, Damico L, Koruda M, Roth Z, Leigh JS, Chance B. Continuous, graded steady-state work in rats studied by in vivo 31P-NMR. J Appl Physiol 1987;63: 1428–1433.

    PubMed  CAS  Google Scholar 

  10. Bittl JA, DeLayre J, Ingwall JS. Rate equation for creatine kinase predicts the in vivo reaction velocity: 31P NMR surface coil studies in brain, heart, and skeletal muscle of the living rat. Biochemistry 1987;26:6083–6090.

    Article  PubMed  CAS  Google Scholar 

  11. Kushmerick MJ, Meyer RA, Brown TR. Regulation ofoxygen consumption in fast- and slow-twitch muscle. Am J Physiol 1992;263:C598–C606.

    PubMed  CAS  Google Scholar 

  12. Bangsbo J, Johansen L, Quistorff B, Saltin B. NMR and analytic biochemical evaluation of CrP nucleotides in the human calf during muscle contraction. J Appl Physiol 1993;74:2034–2039.

    PubMed  CAS  Google Scholar 

  13. Chance B, Eleff S, Leigh JS, Sokolow D, Sepega A. Mitochondrial regulation of phosphocreatine/inorganic phosphate ratios in exercising human muscle: a gated 31P NMR study. Proc Natl Acad Sei USA 1981;78:6714–6718.

    Article  CAS  Google Scholar 

  14. Karlsson J. Lactate and phosphagen concentrations in working muscle of man. Acta Physiol Scand 1971;82:1–72.

    Article  Google Scholar 

  15. Pasonneau JV, Lowry OH. Enzymatic analysis: a practical guide. Totowa, NJ: Humana Press, 1993:403.

    Google Scholar 

  16. Lardy HA, Wellman H. Oxidative phosphorylations: role of inorganic phosphate and acceptor systems in control of metabolic rates. J Biol Chem 1952;195:215–225.

    PubMed  CAS  Google Scholar 

  17. Chance B, Williams GR. Respiratory enzymes in oxidative phosphorylation. J Biol Chem 1955;217:383–393.

    PubMed  CAS  Google Scholar 

  18. Veech RL, Lawson JWR, Cornell NW, Krebs HA. Cyto-solic phosphorylation potential. J Biol Chem 1979;254: 6538–6547.

    PubMed  CAS  Google Scholar 

  19. Karlsson J, Diamant B, Saltin B. Muscle metabolites during submaximal and maximal exercise in man. Scand J Clin Lab Invest 1971;26:358–394.

    Google Scholar 

  20. Taylor DJ, Bore PJ, Styles P, Gadian DG, Radda GK. Bioenergetics of intact human muscle: a 31P nuclear magnetic resonance study. Mol Biol Med 1983;1:77–94.

    PubMed  CAS  Google Scholar 

  21. Meyer RA, Brown TR, Kushmerick MJ. Phosphorous nuclear magnetic resonance of fast- and slow-twitch muscle. Am J Physiol 1985;248:C279–C287.

    PubMed  CAS  Google Scholar 

  22. Meyer RA. A linear model of muscle respiration explains monoexponential phosphocreatine changes. Am J Physiol 1988;254:C548–C553.

    PubMed  CAS  Google Scholar 

  23. Chance B, Eleff S, Leigh JS. Noninvasive, nondestructive approaches to cell bioenergetics. Proc Natl Acad Sei USA 1980;77:7430–7434.

    Article  CAS  Google Scholar 

  24. Lewis SF, Haller RG, Cook JD, Nunnally RL. Muscle fatigue in McArdle’s disease studied by 31P-NMR: effect of glucose infusion. J Appl Physiol 1985;59:1991–1994.

    PubMed  CAS  Google Scholar 

  25. Ross BD, Radda GK. Application of 31P NMR to inborn errors of muscle metabolism. Biochem Soc Trans 1983;11: 627–630.

    PubMed  CAS  Google Scholar 

  26. Ross BD, Radda GK, Gadian DG, Rocker G, Esiri M, Falconer-Smith J. Examination of a case of suspected McArdle’s syndrome by 31P nuclear magnetic resonance. N Engl J Med 1981;304:1338–1342.

    Article  PubMed  CAS  Google Scholar 

  27. Argov Z, Bank WJ, Maris J, Eleff S, Kennaway NG, Olson RE, Chance B. Treatment of mitochondrial myopathy due to complex III deficiency with vitamins K3 and C: a 31P NMR follow-up study. Ann Neurol 1986;19: 598–602.

    Article  PubMed  CAS  Google Scholar 

  28. Arnold DL, Matthews PM, Radda GK. Metabolic recovery after exercise and the assessment of mitochondrial function in vivo in human skeletal muscle by means of 31P NMR. Magn Reson Med 1984;1:307–315.

    Article  PubMed  CAS  Google Scholar 

  29. Eleff S, Kennaway NG, Buist NRM, et al. 31P NMR study of improvement in oxidative phosphorylation by vitamins K3 and C in a patient with a defect in electron transport at complex III in skeletal muscle. Proc Natl Acad Sei USA 1984;81:3529–3533.

    Article  CAS  Google Scholar 

  30. Arnold DL, Bore PJ, Radda GK, Styles P, Taylor DJ. Excessive intracellular acidosis of skeletal muscle on exercise in a patient with a post-viral exhaustion/fatigue syndrome. Lancet J 1984;23:1367–1369.

    Article  Google Scholar 

  31. Heerschap A, den Hollander JA, Reynen H, Goris RJA. Metabolic changes in reflex sympathetic dystrophy: a 31P NMR spectroscopy study. Muscle Nerve 1993;16:367–373.

    Article  PubMed  CAS  Google Scholar 

  32. Taylor DJ, Rajagopalan B, Radda GK. Cellular energetics in hypothyroid muscle. Eur J Clin Invest 1992;22:358–365.

    Article  PubMed  CAS  Google Scholar 

  33. Bertocci LA, Haller RG, Lewis SF, Fleckenstein JL, Nunnally RL. Abnormal high-energy phosphate metabolism in human muscle phosphofructokinase deficiency. J Appl Physiol 1991;70:1201–1207.

    PubMed  CAS  Google Scholar 

  34. Bertocci LA, Lewis SF, Haller RG. Lactate infusion in human muscle PFK deficiency. J Appl Physiol 1993;74: 1342–1347.

    PubMed  CAS  Google Scholar 

  35. Cain DF, Davies RE. Breakdown of adenine triphosphate during a single contraction of working muscle. Biochem Biophys Res Comm 1962;8:361–366.

    Article  PubMed  CAS  Google Scholar 

  36. Infante AA, Davies RE. Adenosine triphosphate breakdown during a single isotonic twitch of frog sartorius muscle. Biochem Biophys Res Comm 1962;9:410–415.

    Article  PubMed  CAS  Google Scholar 

  37. Lohmann K. Über die enzymatische Aufspalyung ser krea-tinphosphorsäure; zugleich ein Beitrag zum Chemismus der Muskelkontraktion. Biochem Z 1934;271:264–277.

    CAS  Google Scholar 

  38. Lundsgaard E. Über die Energetik der anaeroben Muskelkontraktion. Biochem Z 1931;233:322–343.

    CAS  Google Scholar 

  39. Sahlin K, Harris RC, Hultman E. Creatine kinase equilibrium and lactate content compared with muscle pH in tissue samples obtained after isometric exercise. Biochem J 1975;152:173–180.

    PubMed  CAS  Google Scholar 

  40. Crow MT, Kushmerick MJ. Chemical energetics of slow-and fast-twitch muscles of the mouse. J Gen Physiol 1982; 79:147–166.

    Article  PubMed  CAS  Google Scholar 

  41. Bessman SP, Geiger PJ. Transport of energy in muscle: the phosphorylcreatine shuttle. Science 1981;211:448–452.

    Article  PubMed  CAS  Google Scholar 

  42. Jacobus WE. Respiratory control and the integration of heart high-energy phosphate metabolism by mitochondrial creatine kinase. Annu Rev Physiol 1985;47:707–725.

    Article  PubMed  CAS  Google Scholar 

  43. Anderson P, Saltin B. Maximal perfusion of skeletal muscle in man. J Physiol (Lond) 1985;366:233–249.

    Google Scholar 

  44. Forsén S, Hoffman RA. Study of moderately rapid chemical exchange reactions by means of nuclear magnetic double resonance. J Chem Phys 1963;39:2892–2901.

    Article  Google Scholar 

  45. Morris G, Freeman R. Selective excitation in fourier transform nuclear magnetic resonance. J Magn Reson 1978;29: 433–462.

    Article  CAS  Google Scholar 

  46. Brown TR, Ugurbil K, Shulman RG. 31P nuclear magnetic resonance measurements of ATPase kinetics in aerobic Escheria coli cells. Proc Natl Acad Sei USA 1977;74:5551–5553.

    Article  CAS  Google Scholar 

  47. Gadian DG, Radda GK, Brown TR, Chance EM, Dawson MJ, Wilkie DR. The activity of creatine kinase in frog skeletal muscle studied by saturation transfer nuclear magnetic resonance. Biochem J 1981;194:215–228.

    PubMed  CAS  Google Scholar 

  48. Rees D, Smith MB, Harley J, Radda GK. In vivo functioning of creatine Phosphokinase in human forearm muscle, studied by 31P NMR saturation transfer. Magn Reson Med 1989;9:39–52.

    Article  PubMed  CAS  Google Scholar 

  49. Nunnally RL, Hollis DP. Adenosine triphosphate com-partmentation in living hearts: a phosphorus nuclear magnetic resonance saturation transfer study. Biochemistry 1979;18:3642–3646.

    Article  PubMed  CAS  Google Scholar 

  50. Sumegi B, Porpaczy Z, McCammon MT, Sherry AD, Malloy CR, Srere PA. Regulatory consequences of organization of citric acid cycle enzymes. In: Stadtman ER, Chock PB, eds. From metabolite to metabolism, to me-tabolon. San Diego: Academic Press, Inc., 1992:246–260.

    Google Scholar 

  51. Hseih PS, Balaban RS. Saturation and inversion transfer studies of creatine kinase kinetics in rabbit skeletal muscle in vivo. Magn Reson Med 1988;7:56–64.

    Article  Google Scholar 

  52. Ugurbil K, Petein M, Maidan R, Michurski S, From AHL. Measurement of an individual rate constant in the presence of multiple exchanges: application to myocardial creatine kinase reaction. Biochemistry 1986;25:100–107.

    Article  PubMed  CAS  Google Scholar 

  53. Shoubridge EA, Radda GK. A gated 31P NMR study of tetanic contraction in rat muscle depleted of phospho-creatine. Am J Physiol 1987;252:C532–C542.

    PubMed  CAS  Google Scholar 

  54. Brosnan MJ, Raman SP, Chen L, Koretsky AP. Altering creatine kinase isoenzymes in transgenic mouse muscle by overexpression of the B subunit. Am J Physiol 1993;264: C151–C160.

    PubMed  CAS  Google Scholar 

  55. Radda GK. The use of NMR spectroscopy for the understanding of disease. Science 1986;233:640–645.

    Article  PubMed  CAS  Google Scholar 

  56. Kushmerick MJ, Moerland TS, Wiseman RW. Mammalian skeletal muscle fibers distinguished by contents of phospho-creatine, ATP, and Pi. Proc Natl Acad Sei USA 1992;89: 7521–7525.

    Article  CAS  Google Scholar 

  57. Taylor DJ, Styles P, Matthews PM, et al. Energetics of human muscle: exercise-induced ATP depletion. Magn Reson Med 1986;3:44–54.

    Article  PubMed  CAS  Google Scholar 

  58. Ästrand P-O, Rodahl K. Textbook of work physiology. New York: McGraw Hill, 1986.

    Google Scholar 

  59. Saltin B, Gollnick PD. Skeletal muscle adaptability: significance for metabolism and performance. Bethesda, MD: American Physiological Society, 1983:555–631.

    Google Scholar 

  60. Achten E, van Cauteren M, Willem R, et al. 31P-NMR spectroscopy and the metabolic properties of different muscle fibers. J Appl Physiol 1990;68:644–649.

    PubMed  CAS  Google Scholar 

  61. Mizuno M, Justesen O, Bedolla J, Friedman DB, Secher NH, Quisorff B. Partial curarization abolishes splitting of the inorganic phosphate peak in 31P-NMR spectroscopy during intense forearm exercise in man. Acta Physiol Scand 1990;139:611–612.

    Article  PubMed  CAS  Google Scholar 

  62. Park JH, Brown RL, Park CR, et al. Functional pools of oxidative and glycolytic fibers in human muscle observed by 31P magnetic resonance spectroscopy during exercise. Proc Natl Acad Sei USA 1987;84:8976–8980.

    Article  CAS  Google Scholar 

  63. Vandenborne K, McCully K, Kakihira H, et al. Metabolic heterogeneity in human calf muscle during maximal exercise. Proc Natl Acad Sei USA 1991;88:5714–5718.

    Article  CAS  Google Scholar 

  64. Fleckenstein JL, Bertocci LA, Nunnally RL, Peshock RM. Exercise-enhanced MR imaging of variations in forearm muscle anatomy and use: importance in MR spectroscopy. Am J Roentg 1989;153:693–698.

    CAS  Google Scholar 

  65. Fleckenstein JL, Watumull D, Bertocci LA, Parkey RW, Peshock RM. Finger-specific flexor recruitment in humans: depiction by exercise-enhanced MRI. J Appl Physiol 1992; 72:1974–1977.

    PubMed  CAS  Google Scholar 

  66. Henneman E, Mendell LM. Functional organization of motoneuron pool and its inputs. Bethesda, MD: American Physiological Society, 1981:423–507.

    Google Scholar 

  67. Blei ML, Conley KE, Kushmerick MJ. Separate measures of ATP utilization and recovery in human skeletal muscle. J Physiol (Lond) 1993;465:203–222.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Bertocci, L.A. (1996). 31P-MRS of Muscle Physiology. In: Fleckenstein, J.L., Crues, J.V., Reimers, C.D. (eds) Muscle Imaging in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2314-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2314-6_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7498-8

  • Online ISBN: 978-1-4612-2314-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics