Skip to main content

Histopathological Basis of Muscle Imaging

  • Chapter
Muscle Imaging in Health and Disease

Abstract

The skeletal musculature, consisting of 434 single muscles, comprises approximately 25% to 35% of the total body weight in women and 40% to 50% in men,1 thus being the largest organ of the body. Every muscle has at least one belly. A few muscles, for example, the rectus abdominis, consist of more than one belly, separated by tendinous intersections. The muscle merges at either end with a tendon, aponeurosis, or the periosteum of the bone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hollmann W, Hettinger T Sportmedizin Arbeits- und Trainingsgrundlagen 3rd ed. Stuttgart: Schattauer, 1990:30.

    Google Scholar 

  2. Sissons HA. Anatomy of the motor unit. In: Walton JN, ed. Disorders of the voluntary muscle. Edinburgh: Churchill Livingston, 1974:1–19.

    Google Scholar 

  3. Lamminen A, Jääskeläinen J, Rapola J, Suramo I. High-frequency ultrasonography of skeletal muscle in children with neuromuscular disease. J Ultrasound Med 1988;7: 505–509.

    PubMed  CAS  Google Scholar 

  4. Reimers K, Reimers CD, Wagner St, et al. Skeletal muscle sonography: a correlative study between echointensities and morphology. J Ultrasound Med 1993;12:73–77.

    PubMed  CAS  Google Scholar 

  5. Reimers CD, Fleckenstein JL, Witt TN, et al. Muscular ultrasound in idiopathic inflammatory myopathies of adults. J Neurol Sei 1993;116:82–92.

    Article  CAS  Google Scholar 

  6. Nishimura M, Nishimura S, Yamada S. Ultrasound imaging of the muscle in muscular dystrophy. No To Hattatsu 1989;21:234–238.

    PubMed  CAS  Google Scholar 

  7. Reimers CD, Lochmüller H, Goebels N, et al. Der Einfluß von Muskelarbeit auf das Myosonogramm. Ultraschall Med 1995;16:79–83.

    Article  PubMed  CAS  Google Scholar 

  8. Schedel H, Reimers CD, Naegele M, et al. Imaging techniques in myotonic dystrophy. A comparative study of ultrasound, computed tomography and magnetic resonance imaging of skeletal muscles Eur J Radiol 1992;15:230–238.

    Article  PubMed  CAS  Google Scholar 

  9. Grindrod S, Tofts P, Edwards R. Investigation of human skeletal muscle structure and composition by X-ray computerised tomography. Eur J Clin Invest 1983;13:465–468.

    Article  PubMed  CAS  Google Scholar 

  10. Herson D, Larde D, Ferry M, et al. Apport diagnostique du scanner X en pathologie musculaire. Rev Neurol (Paris) 1985;141:482–489.

    CAS  Google Scholar 

  11. Ohiwa N, Kato T, Ando T, et al. CT findings of skeletal muscles in children with progressive muscular dystrophy. Brain Dev 1981;13:156–159.

    Google Scholar 

  12. van der Vliet AM, Thijssen HOM, Joosten E, Merx JL. CT in neuromuscular disorders: a comparison of CT and histology. Neuroradiology 1988;30:421–425.

    Article  Google Scholar 

  13. Fleckenstein JL, Weatherall PT, Bertocci LA, et al. Locomotor system assessment by muscle magnetic resonance imaging. Magn Reson Q 1991;7:79–103.

    PubMed  CAS  Google Scholar 

  14. Scholz TD, Fleagle SR, Burns TL, Skorton DJ Tissue determinants of nuclear magnetic resonance relaxation times. Effect of water and collagen content in muscle and tendon Invest Radiol 1989;24:893–898.

    Article  PubMed  CAS  Google Scholar 

  15. Fraser DD, Frank JA, Dalakas MC. Inflammatory myopathies: MR imaging and spectroscopy. Radiology 1991; 179:341–342.

    PubMed  CAS  Google Scholar 

  16. Hernandez RJ, Keim DR, Chenevert TL, et al. Fat-suppressive MR imaging in myositis. Radiology 1992; 182: 217–219.

    PubMed  CAS  Google Scholar 

  17. Fleckenstein JL, Haller RG, Lewis SF, Parkey RW, Peshock RM. Focal muscle injury and atrophy in glycolytic myopathies. Muscle Nerve 1989;12(10):849–855.

    Article  PubMed  CAS  Google Scholar 

  18. Fleckenstein JL, Parkey RW, Peshock RM. Sports-related muscle injuries: evaluation with MR imaging. Radiology 1989;172(3):793–798.

    PubMed  CAS  Google Scholar 

  19. Fleckenstein JL, Watumull D, Conner K, et al. Denervated human skeletal muscle: MRI evaluation. Radiology 1993; 187:213–218.

    PubMed  CAS  Google Scholar 

  20. Polak JF, Jolesz FA, Adams DF. NMR of skeletal muscle differences in relaxation parameters related to extracellular/ intracellular fluid spaces. Invest Radiol 1988;23:107–112.

    Article  PubMed  CAS  Google Scholar 

  21. Kuno S-y, Katsuta S, Inouye T, et al. Relationship between MR relaxation time and muscle fiber composition Radiology 1988;169:567–568.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Reimers, C.D., Fischer, P., Pongratz, D.E. (1996). Histopathological Basis of Muscle Imaging. In: Fleckenstein, J.L., Crues, J.V., Reimers, C.D. (eds) Muscle Imaging in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2314-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2314-6_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7498-8

  • Online ISBN: 978-1-4612-2314-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics