Skip to main content

Optimization of Seed Production for a Simultaneous Saccharification Cofermentation Biomass-to-Ethanol Process Using Recombinant Zymomonas

  • Chapter
Biotechnology for Fuels and Chemicals

Part of the book series: Applied Biochemistry and Biotechnology ((ABAB,volume 63-65))

  • 508 Accesses

Abstract

The five-carbon sugar D-xylose is a major component of hemicellulose and accounts for roughly one-third of the carbohydrate content of many lignocellulosic materials. The efficient fermentation of xylose-rich hemicellulose hydrolyzates (prehydrolyzates) represents an opportunity to improve significantly the economics of large-scale fuel ethanol production from lignocellulosic feedstocks. The National Renewable Energy Laboratory (NREL) is currently investigating a simultaneous saccharification and cofermentation (SSCF) process for ethanol production from biomass that uses a dilute-acid pretreatment and a metabolically engineered strain of Zymomonas mobilis that can coferment glucose and xylose. The objective of this study was to establish optimal conditions for cost-effective seed production that are compatible with the SSCF process design.

Two-level and three-level full factorial experimental designs were employed to characterize efficiently the growth performance of recombinant Z. mobilis CP4:pZB5 as a function of nutrient level, pH, and acetic acid concentration using a synthetic hardwood hemicellulose hydrolyzate containing 4% (w/v) xylose and 0.8% (w/v) glucose. Fermentations were run batchwise and were pH-controlled at low levels of clarified corn steep liquor (cCSL, 1–2% v/v), which were used as the sole source of nutrients. For the purpose of assessing comparative fermentation performance, seed production was also carried out using a “benchmark” yeast extract-based laboratory medium. Analysis of variance (ANOVA) of experimental results was performed to determine the main effects and possible interactive effects of nutrient (cCSL) level, pH, and acetic acid concentration on the rate of xylose utilization and the extent of cell mass production. Results indicate that the concentration of acetic acid is the most significant limiting factor for the xylose utilization rate and the extent of cell mass production; nutrient level and pH exerted weaker, but statistically significant effects. At pH 6.0, in the absence of acetic acid, the final cell mass concentration was 1.4 g dry cell mass/L (g DCM/L), but decreased to 0.92 and 0.64 g DCM/L in the presence of 0.5 and 1.0% (w/v) acetic acid, respectively. At concentrations of acetic acid of 0.75 (w/v) or lower, fermentation was complete within 1.5 d. In contrast, in the presence of 1.0% (w/v) acetic acid, 25% of the xylose remained after 2 d. At a volumetric supplementation level of 1.5–2.0% (v/v), cCSL proved to be a cost-effective single-source nutritional adjunct that can support growth and fermentation performance at levels comparable to those achieved using the expensive yeast extract-based laboratory reference medium.

Author to whom all correspondence and reprint requests should be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wright, J. D. (1988), Chem. Eng. Prog. 84, 62–74.

    CAS  Google Scholar 

  2. Wright, J. D., Wyman, C. E., and Grohman, K. (1988), Appl. Biochem. Biotechnol. 18, 75–90.

    Article  CAS  Google Scholar 

  3. Wyman, C. E. and Hinman, N. D. (1990), Appl. Biochem. Biotechnol. 24/25, 735–753.

    Article  Google Scholar 

  4. Lynd, L. R. (1989), Adv. Biochem. Eng. Biotechnol. 38,1–52.

    CAS  Google Scholar 

  5. Lynd, L. R., Cushman, J. H., Nichols, R. J. and Wyman, C. E. (1991), Science 251, 1318–1323.

    Article  CAS  Google Scholar 

  6. Keim, C. R. (1983), Enzyme Microbiol. Technol. 5,103–114.

    Article  CAS  Google Scholar 

  7. Jeffries, T. W. (1981), Biotechnol. Bioeng., Symp. 11, 315–324.

    CAS  Google Scholar 

  8. Jeffries, T. W. (1983), Adv. Biochem. Eng. Biotechnol. 27,1–32.

    CAS  Google Scholar 

  9. Jeffries, T. W. (1990), in Yeast: Biotechnology and Biocatalysis, Verachtert, H. and De Mot, R., eds., Marcel Dekker, New York, pp. 349–394.

    Google Scholar 

  10. Hahn-Hägerdahl, B., Hallborn, J., Jeppson, H., Olsson, L., Skoog, K., and Walfridson, M. (1993), in Bioconversion of Forest and Agricultural Plant Residues Saddler, J. N., ed., C.A.B. International, Wallingford, UK, pp. 231–290.

    Google Scholar 

  11. Hinman, N. D., Wright, J. D., Hoagland, W., and Wyman, C. E. (1989), Appl. Biochem. Biotechnol. 20/21, 391–401.

    Article  Google Scholar 

  12. Hinman, N. D., Schell, D. J, Riley, C. J., Bergeron, P. W., and Walter, P. J. (1992), Appl. Biochem. Biotechnol. 34/35, 639–649.

    Article  Google Scholar 

  13. Lynd, L. R. (1990), Appl. Biochem. Biotechnol. 24/25, 695–719.

    Article  Google Scholar 

  14. Picataggio, S. K., Eddy, C., Deanda, K., Franden, M. A., Finkelstein, M., and Zhang, M. (1996), Seventeenth Symposium on Biotechnology for Fuels & Chemicals (Paper #9).

    Google Scholar 

  15. Picataggio, S. K., Zhang, M., and Finkelstein, M. (1994), in: Enzymatic Conversion of Biomass for Fuels Production,Himmel, M. E., Baker, J. O., and Overend, R. A., eds., American Chemical Society, Washington, DC, ACS Symposium Series 566, pp. 342–362.

    Chapter  Google Scholar 

  16. Zhang, M., Franden, M. A., Newman, M., McMillan, J., Finkelstein, M., and Picataggio, S. K. (1995), Appl. Biochem. Biotechnol. 51/52, 527–536.

    Article  Google Scholar 

  17. Rogers, P. L., Lee, K. J., Skotnicki, M. L., and Tribe, D. E. (1982), Adv. Biochem. Eng. 23, 37–84.

    Google Scholar 

  18. Lawford, G. R., Lavers, B. H., Good, D., Charley, R., Fein, J., and Lawford, H. G. (1982), in International Symposium on Ethanol from Biomass,Duckworth, H. E. and Thompson, E. A., eds., Royal Society of Canada, Winnipeg, Canada, pp. 482–507.

    Google Scholar 

  19. Lawford, H. G. (1988), Proc. VIII Intl Symp. on Alcohol Fuels,New Energy Development Organization, Tokyo, pp. 21–27.

    Google Scholar 

  20. Swings, J. and DeLey, J. (1977), Bacteriol. Rev. 41,1–46.

    CAS  Google Scholar 

  21. Montenecourt, B. S. (1985), in Biology of Industrial Microorganisms,Demain, A. L. and Simon, N. A., eds., Benjamin/Cummings, Meno Park, CA, pp. 216–287.

    Google Scholar 

  22. Doelle, H. W., Kirk, L., Crittenden, R., Toh, H., and Doelle, M. (1993), Crit. Rev. Biotechnol. 13, 57–98.

    Article  CAS  Google Scholar 

  23. Lawford, H. G. (1988), Appl. Biochem. Biotechnol. 17, 203–219.

    Article  CAS  Google Scholar 

  24. Lawford, H. G. and Ruggiero, A. (1990), Biotechnol. Appl. Biochem. 12, 206–211.

    CAS  Google Scholar 

  25. Bringer, S., Sahm, H., and Swyzen, W. (1984), Biotechnol. Bioeng. Symp. No. 14, 311–319.

    CAS  Google Scholar 

  26. Rodriguez, E. and Callieri, D. A. S. (1986), Biotechnol. Lett. 8, 745–748.

    Article  CAS  Google Scholar 

  27. Doelle, M. B., Greenfield, P. F., and Doelle, H. W. (1990), Proc. Biochem. 25,151–156.

    CAS  Google Scholar 

  28. Beavan, M., Zawadzki, B., Droiniuk, R., Fein, J. E., and Lawford, H. G. (1989), Appl. Biochem. Biotechnol. 20/21, 319–326.

    Article  Google Scholar 

  29. Lee, G. M., Kim, C. H., Lee, K. J., Zainal Abidin Mohd, Y., Han, M. H., and Rhee, S. K. (1986), J. Ferment Technol. 64, 293–297.

    Article  CAS  Google Scholar 

  30. Parekh, S. R., Parekh, R. S., and Wayman, M. (1989), Proc. Biochem. 24, 85–91.

    Google Scholar 

  31. Park, S. C., Kademi, A., and Baratti, J. C. (1993), Biotechnol. Lett. 15(11), 1179–1184.

    Article  CAS  Google Scholar 

  32. Liu, C.-Q., Goodman, A. E., and Dunn, N. W. (1988), J. Biotechnol. 7, 61.

    Article  CAS  Google Scholar 

  33. Feldman, S. D., Sahm, H., and Sprenger, G. A. (1992), Appl. Microbiol. Biotechnol. 38, 354.

    Article  Google Scholar 

  34. Zhang, M., Eddy, C., Deanda, K., Finkelstein, M., and Picataggio, S. K. (1995), Science 267, 240–243.

    Article  CAS  Google Scholar 

  35. Lynd, L. R., Elander, R. T., and Wyman, C. E. (1996), Appl. Biochem. Biotechnol. 57/58, 641–661.

    Google Scholar 

  36. Goodman, A. E., Rogers, P. L., and Skotnicki, M. L. (1982), Appl. Environ. Microbiol. 44(2), 496–498.

    CAS  Google Scholar 

  37. Fein, J. E., Charley, R. C., Hopkins, K. A., Lavers, B., and Lawford, H. G. (1983), Biotechnol Lett. 5,1–6.

    CAS  Google Scholar 

  38. Nipkow, A., Beyeler, W., and Feichter, A. (1984), Appl. Microbiol. Biotechnol. 19, 237–240.

    Article  CAS  Google Scholar 

  39. Galani, I., Drainas, C., and Typas, M. A. (1985), Biotechnol. Lett. 7, 673–678.

    Article  CAS  Google Scholar 

  40. Baratti, J., Varma, R., and Bû Lock, J. D. (1986), Biotechnol. Lett. 8,175–180.

    Article  CAS  Google Scholar 

  41. Lawford, H. G., Holloway, P., and Ruggiero, A. (1988), Biotechnol. Lett. 10, 809–814.

    Article  CAS  Google Scholar 

  42. Lawford, H. G. and Rousseau, J. D. (1996), Appl. Biochem. Biotechnol. 57/58, 307–326.

    Article  CAS  Google Scholar 

  43. Asghari, A., Bothast, R. J., Doran, J. B., and Ingram, L. O. (1996), J. Ind. Microbiol. 16, 42–47.

    Article  CAS  Google Scholar 

  44. Lawford, H. G. and Rousseau, J. D. (1997), Appl. Biochem. Biotechnol. (18th Symp.), 63–65, 287.

    Google Scholar 

  45. Grohman, K., Himmel, M., Rivard, C., Tucker, M., Baker, T., Torget, R., and Graboski, M. (1984), Biotechnol. Bioeng. Symp. 14,139–157.

    Google Scholar 

  46. Kong, F., Engler, C. R., and Soltes, E. (1992), Appl. Biochem. Biotechnol. 34/35, 23–35.

    Article  Google Scholar 

  47. Timell, T. E. (1964), Adv. Carbohydrate Chem. 19, 247–302.

    CAS  Google Scholar 

  48. Lawford, H. G. and Rousseau, J. D. (1993), in Energy from Biomass and Wastes XVI (March 1992), Klass, D. L., ed., Institute of Gas Technology, Chicago, IL, pp. 559–597.

    Google Scholar 

  49. McMillan J. D. (1994), in Enzymatic Conversion of Biomass for Fuels Production, Himmel, M. E., Baker, J. O., and Overend, R. A., eds., American Chemical Society, Washington, DC, ACS Symposium Series 566, pp. 411–437.

    Chapter  Google Scholar 

  50. Lawford, H. G. and Rousseau, J. D. (1993), Appl. Biochem. Biotechnol. 39/40, 301–322.

    Article  Google Scholar 

  51. Lawford, H. G. and Rousseau, J. D. (1994), Appl. Biochem. Biotechnol. 45/46, 437–448.

    Article  Google Scholar 

  52. Box, G. E. P., Hunter, W. G., and Hunter, J. S. (1978), in: Statistics for Experimenters Wiley, New York.

    Google Scholar 

  53. Davies, O. L. (1967), in Design and Analysis of Industrial Experiments,Hafneri, New York.

    Google Scholar 

  54. Maddox, I. S. and Richert, S. H. (1977), J. Appl. Bacteriol. 43,197–204.

    CAS  Google Scholar 

  55. Myers, R. H. (1971), in Response Surface Methodology, Allyn and Bacon, Boston.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Humana Press Inc.

About this chapter

Cite this chapter

Lawford, H.G., Rousseau, J.D., McMillan, J.D. (1997). Optimization of Seed Production for a Simultaneous Saccharification Cofermentation Biomass-to-Ethanol Process Using Recombinant Zymomonas . In: Davison, B.H., Wyman, C.E., Finkelstein, M. (eds) Biotechnology for Fuels and Chemicals. Applied Biochemistry and Biotechnology, vol 63-65. Humana Press. https://doi.org/10.1007/978-1-4612-2312-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2312-2_24

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-7497-1

  • Online ISBN: 978-1-4612-2312-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics