Reaction Engineering Aspects of α-1,4-d-Glucan Phosphorylase Catalysis

Comparison of Plant and Bacterial Enzymes for the Continuous Synthesis of d-Glucose-1 -Phosphate
  • Bernd Nidetzky
  • Richard Griessler
  • Andreas Weinhäusel
  • Dietmar Haltrich
  • Klaus D. Kulbe
Part of the Applied Biochemistry and Biotechnology book series (ABAB, volume 63-65)


Some important process properties of α-1,4-d-glucan phosphorylases isolated from the bacterium Corynebacterium callunae and potato tubers (Solanum tuberosum) were compared. Apart from minor differences in their stability and specificity (represented by the maximum degree of maltodextrin conversion) and a 10-fold higher affinity of the plant phosphorylase for maltodextrin (K M of 1.3 g/L at 300 mM of orthophosphate), the performances of both enzymes in a continuous ultrafiltration membrane reactor were almost identical. Product synthesis was carried out over a time course of 300–400 h in the presence or absence of auxiliary pullulanase (increasing the accessibility of the glucan substrate for phosphorolytic attack up to 15–20%). The effect of varied dilution rate and reaction temperature on the resulting productivities was quantitated, and a maximum operational temperature of 40°C was identified.

Index Entries

α-1,4-d-Glucan phosphorylase Corynebacterium callunae Solanum tuberosum α-D-glucose-1-phosphate continuous production 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Newgard, C. B., Hwang, P. K., and Fletterick, R. J. (1989), Crit. Rev. Biochem. Mol. Biol. 24 69–99.CrossRefGoogle Scholar
  2. 2.
    Tanizawa, K., Mori, H., Tagaya, M., and Fukui, T. (1994), in Molecular Aspects of Enzyme Catalysis, Fukui, T. and Soda, K., eds., VCH, Weinheim, Germany, pp. 107–126.CrossRefGoogle Scholar
  3. 3.
    Guilbot, A. and Mercier, C. (1985), in The Polysaccharides, Aspinall, G.O., ed., Academic Press, Orlando, FL, pp. 210–283.Google Scholar
  4. 4.
    Palm, D., Klein, H., Schinzel, R., Buchner, M., and Helmreich, E. J. M. (1990), Biochemistry 29 1099–1107.CrossRefGoogle Scholar
  5. 5.
    Hudson, J. W., Golding, G. B., and Crerar, M. M. (1993), J. Mol. Biol. 234 700–721.CrossRefGoogle Scholar
  6. 6.
    Barford, D. and Johnson, L. N. (1989), Nature 340 609–616.CrossRefGoogle Scholar
  7. 7.
    Hollo, J., Laszlo, E., and Juhasz, J. (1967), Plant a-Glucan Phosphorylase, Akademiai Kiado, Budapest, Hungary.Google Scholar
  8. 8.
    Kayane, S., Kawai, T., Sakata, M., Imamura, T., Tanigaki, M., and Kurosaki, T. (1989), EP 0 305 981 A2.Google Scholar
  9. 9.
    Weinhäusel, A., Nidetzky, B., Rohrbach, M., Blauensteiner, B., and Kulbe, K. D. (1994), Appl. Microbiol. Biotechnol. 41 510–516.CrossRefGoogle Scholar
  10. 10.
    Weinhäusel, A., Nidetzky, B., Kysela, C., and Kulbe, K. D. (1995), Enzyme Microb. Technol., 17 130–135.CrossRefGoogle Scholar
  11. 11.
    Nidetzky, B., Weinhäusel, A., Grießler, R., and Kulbe, K. D. (1995), J. Carbohydr. Chem. 14 1017–1028.CrossRefGoogle Scholar
  12. 12.
    Vandamme, E., van Loo, J., Machtelinckx, L., and de Laporte, A. (1987), Adv. Appl. Microbiol. 32 163–201.CrossRefGoogle Scholar
  13. 13.
    van Bekkum, H. (1991), in Carbohydrates as Organic Raw Materials. Lichtenthaler, F. W., ed., VCH, Weinheim, Germany, pp. 289–310.Google Scholar
  14. 14.
    Murao, S., Nagano, H., Ogura, S., and Nishino, T. (1985), Agric. Biol. Chem. 49 2113–2118.CrossRefGoogle Scholar
  15. 15.
    Stabgier, P. and Thiem, J. (1991), in Enzymes in Carbohydrate Synthesis ACS Symp. Series 466, Bednarski, M. D. and Simon, E. S., eds., Washington, DC, pp. 63–78.CrossRefGoogle Scholar
  16. 16.
    Prazeres, D. M. F. and Cabral, J. M. S. (1994), Enzyme Microb. Technol. 16 738–750.CrossRefGoogle Scholar
  17. 17.
    Kula, M.-R. and Wandrey, C. (1987), Meth. Enzymol. 136 9–21.CrossRefGoogle Scholar
  18. 18.
    Bradford, M. M. (1976), Anal. Biochem. 72 248–254.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1997

Authors and Affiliations

  • Bernd Nidetzky
    • 1
  • Richard Griessler
    • 1
  • Andreas Weinhäusel
    • 1
  • Dietmar Haltrich
    • 1
  • Klaus D. Kulbe
    • 1
  1. 1.Division of Biochemical Engineering, Institute of Food TechnologyUniversität für Bodenkultur WienViennaAustria

Personalised recommendations