Advertisement

Recent Developments in Modeling Shock Compression of Porous Materials

  • W. Tong
  • G. Ravichandran
Part of the High-Pressure Shock Compression of Condensed Matter book series (SHOCKWAVE)

Abstract

During the past several decades, the response of porous materials to impact loading has been a research subject of considerable interest for applications such as shock wave attenuation [1–4], compaction-to-detonation ignition in energetic materials such as porous granular explosives [5–7], and, especially, dynamic consolidation and synthesis of high-performance materials [8–11]. The compaction and bonding of powders as well as the initiation or suppression of chemical reactions in the powders is most closely related to the local deformation processes and thermal histories. A thorough understanding of the shock wave processing of porous materials is needed in order to optimize the processing parameters, extend the technique to new material systems, and design fixtures to eliminate compact cracking.

Keywords

Porous Material Spherical Shell Shock Compression Shock Wave Front Shock Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W. Herrmann, J. Appl. Phys. 40, pp. 2490–2499 (1969).ADSCrossRefGoogle Scholar
  2. [2]
    M.M. Carroll and A.C. Holt, J. Appl. Phys. 43, pp.1626–1636 (1972).ADSCrossRefGoogle Scholar
  3. [3]
    B.M. Butcher and C.H. Karnes, J. Appl. Phys. 40, pp. 2967–2976 (1969).ADSCrossRefGoogle Scholar
  4. [4]
    R.R. Boade, J. Appl. Phys. 41, pp.4542–4551 (1970).ADSCrossRefGoogle Scholar
  5. [5]
    M.R. Baer, J. Appl. Mech. 55, pp. 36–43 (1988).ADSCrossRefGoogle Scholar
  6. [6]
    L.S. Bennett, Y. Horie, and M.M. Hwang, J. Appl. Phys. 76, pp. 3394–3402 (1994).ADSCrossRefGoogle Scholar
  7. [7]
    D.S. Stewart, B.W. Asay, and K. Prasad, Phys. Fluids 6, pp. 2515–2534 (1994).ADSCrossRefGoogle Scholar
  8. [8]
    V.D. Linse, Dynamic Compaction of Metal and Ceramic Powders, National Materials Advisory Board, NMAB-394, (U.S.) National Academy Press, Washington, DC (1983).Google Scholar
  9. [9]
    W.H. Gourdin, Prog. Mater. Sci. 30, pp. 39–80 (1986).CrossRefGoogle Scholar
  10. [10]
    N.N. Thadhani, Prog. Mater. Sci. 37, pp. 117–226 (1993).CrossRefGoogle Scholar
  11. [11]
    V.F. Nesternko, High-Rate Deformation of Heterogeneous Materials, Nauka, Novosibirsk (1992).Google Scholar
  12. [12]
    M.U. Anderson, R.A. Graham, G.T. Holman, in High-Pressure Science and Technology-1993 (eds. S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross), American Institute of Physics, New York, pp. 1111–1114(1994).Google Scholar
  13. [13]
    M.B. Boslough and T.J. Ahrens, Rev. Sci. Instrum. 60, pp. 3711–3716 (1989).ADSCrossRefGoogle Scholar
  14. [14]
    R.L. Williamson, J. Appl. Phys. 68, pp. 1287–1296 (1990).ADSCrossRefGoogle Scholar
  15. [15]
    W. Tong and G. Ravichandran, J. Appl. Phys. 74, pp. 2425–2435 (1993).ADSCrossRefGoogle Scholar
  16. [16]
    D.J. Benson, W. Tong, and G. Ravichandran, Model. Simul. Mater. Sci. Eng. (in press).Google Scholar
  17. [17]
    M.M. Carroll, Metall. Trans. 17A, pp. 1977–1984 (1986).Google Scholar
  18. [18]
    R.M. German, Powder Metallurgy Science, 2nd ed., Metal Powder Industries Federation, Princeton, NJ (1994).Google Scholar
  19. [19]
    K. Konopicky, Radex Rundschau 3, pp. 141–148 (1948).Google Scholar
  20. [20]
    P.C. Chou, Z. Ritman, and D. Liang, Mech. Mater. 17, pp. 295–305 (1994).CrossRefGoogle Scholar
  21. [21]
    C. Torre, Berg-Huttenmann. Monatsh. 93, pp. 62–67 (1948).Google Scholar
  22. [22]
    M.M. Carroll and KT. Kim, Powder Metall. 27, p. 153 (1984).Google Scholar
  23. [23]
    E. Voce, Metallurgica 51, pp. 219–226 (1955).Google Scholar
  24. [24]
    J.H. Palm, Appl. Sci. Res. A2, pp. 198–214 (1949).CrossRefGoogle Scholar
  25. [25]
    K.T. Kim and M.M. Carroll, Int. J. Plasticity 3, pp. 63–73 (1987).CrossRefGoogle Scholar
  26. [26]
    J.K. MacKenzie and R. Shuttleworth, Proc. Phys. Soc. 1362, pp. 833–852 (1949).Google Scholar
  27. [27]
    P. Murray, E.P. Rodgers, and J. Williams, Trans. Br. Ceram. Soc. 53, pp. 474–510 (1954).Google Scholar
  28. [28]
    D.S. Wilkinson and M.F. Ashby, Acta Metall. 23, pp. 1277–1285 (1975).CrossRefGoogle Scholar
  29. [29]
    M. Haghi and L. Anand, Intl. J. Plasticity 7, p. 123 (1991).MATHCrossRefGoogle Scholar
  30. [30]
    R.W. Klopp, R.J. Clifton, and T.G. Shawki, Mech. Mater. 4, pp. 375–385 (1985).CrossRefGoogle Scholar
  31. [31]
    R.J. Clifton, Appl. Mech. Rev. 43, pp. s9–s22 (1990).ADSCrossRefGoogle Scholar
  32. [32]
    W. Tong, R.J. Clifton, and S. Huang, J. Mech. Phys. Solids, 40, pp. 1251–1294 (1992).ADSCrossRefGoogle Scholar
  33. [33]
    A.C. Holt, M.M. Carroll, and B.M. Butcher, in Pore Structure and Properties of Materials 5 (ed. S. Modry), Academia Prague, Prague, pp. D63–D76 (1974).Google Scholar
  34. [34]
    B.M. Butcher, M.M. Carroll, and A.C. Holt, J. Appl. Phys. 45, pp. 3864–3875 (1974).ADSCrossRefGoogle Scholar
  35. [35]
    M.M. Carroll, K.T. Kim, and V.F. Nesterenko, J. Appl. Phys. 59, pp. 1962–1967 (1986).ADSCrossRefGoogle Scholar
  36. [36]
    W. Tong and G. Ravichandran, Appl. Phys. Letts. 65, pp. 2783–2785 (1994).ADSCrossRefGoogle Scholar
  37. [37]
    R.G. McQueen, S.P. Marsh, J.W. Taylor, J.N. Fritz, and W.J. Carter, in High Velocity Impact Phenomena (ed. R. Kinslow), Academic Press, New York, p. 293 (1970).Google Scholar
  38. [38]
    R.R. Boade, J. Appl. Phys. 39, pp. 5693–5702 (1968).ADSCrossRefGoogle Scholar
  39. [39]
    G.A. Simons and H.H. Legner, J. Appl. Phys. 53, pp. 943–947 (1982).ADSCrossRefGoogle Scholar
  40. [40]
    D.K. Dijken and J.Th.M. DeHosson, J. Appl. Phys. 75, pp. 809–813 (1994).ADSCrossRefGoogle Scholar
  41. [41]
    M.M. Carroll and A.C. Holt, J. Appl. Phys. 43, pp. 759–761 (1972).ADSCrossRefGoogle Scholar
  42. [42]
    R.K. Linde, L. Seaman, and D.N. Schmidt, J. Appl. Phys. 43, pp. 3367–3375 (1972).ADSCrossRefGoogle Scholar
  43. [43]
    D. Raybould and T.Z. Blazynski, in Materials at High Strain Rates (ed. T.Z. Blazynski), Elsevier Applied Science, New York, p.71 (1987).Google Scholar
  44. [44]
    A.P. Mann, D.I. Pullin, M.N. Macrossan, and N.W. Page, J. Appl. Phys. 70, pp. 3281–3290 (1991).ADSCrossRefGoogle Scholar
  45. [45]
    G.T. Holman, Jr., R.A. Graham, and M.U. Anderson, in High-Pressure Science and Technology-1993 (eds. S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross), American Institute of Physics, New York, pp. 1119–1122 (1994).Google Scholar
  46. [46]
    A. Ferreira and M.A. Meyers, in Shock-Wave and High-Strain-Rate Phenomena in Materials (eds. M.A. Meyers, L.E. Murr, and K.P. Staudhammer), Marcel Dekker, New York, pp. 361–370 (1991).Google Scholar
  47. [47]
    R.B. Shwartz, P. Kasiraj, T. Vreeland Jr., and T.J. Ahrens, Acta Metall. 32, pp. 1243–1252 (1984).CrossRefGoogle Scholar
  48. [48]
    G.I. Taylor and M.A. Quinney, Proc. Roy. Soc. London A143, p. 307 (1934).ADSGoogle Scholar
  49. [49]
    J.J Mason, A.J. Rosakis, and G. Ravichandran, Mech. Mater. 17, pp. 135–145 (1994).CrossRefGoogle Scholar
  50. [50]
    G.E. Duvall and S.M. Taylor, J. Comp. Mater. 5, p. 130 (1971).CrossRefGoogle Scholar
  51. [51]
    B.R. Krueger and T. Vreeland, Jr., J. Appl. Phys. 69, pp. 710–716 (1991).ADSCrossRefGoogle Scholar
  52. [52]
    W. Tong, G. Ravichandran, T. Christman, and T. Vreeland Jr., Acta Metall. Mater. 43, pp. 235–250 (1995).Google Scholar
  53. [53]
    K.S. Vecchio, L.H. Yu, and M.A. Meyers, Acta Metall. Mater. 42, pp. 701–714 (1994).CrossRefGoogle Scholar
  54. [54]
    H. Kunishige et al., Report of Research Laboratory of Engineering Materials 15, Tokyo Institute of Technology, Tokyo (1990).Google Scholar
  55. [55]
    N.N. Thadhani, Adv. Mater. Manuf. Proc. 3, pp. 493–549 (1988).CrossRefGoogle Scholar
  56. [56]
    L.H. Yu, M.A. Meyers, and N.N. Thadhani, J. Mater. Res. 5, pp. 302–312 (1990).ADSMATHCrossRefGoogle Scholar
  57. [57]
    Y. Horie, R.A. Graham, and I.K. Simonsen, Mater. Lett. 3, p. 354 (1985).CrossRefGoogle Scholar
  58. [58]
    W. Yang, G.M. Bond, H. Tan, T.J. Ahrens, and G. Liu, J. Mater. Res. 7, pp. 1501–1518 (1992).ADSCrossRefGoogle Scholar
  59. [59]
    K. Kondo and S. Sawai, J. Am. Ceram. Soc. 73, pp. 1983–1991 (1990).CrossRefGoogle Scholar
  60. [60]
    B.R. Krueger, A.H. Mutz, and T. Vreeland, Jr., Metall. Trans. A23, pp. 55–58 (1992).Google Scholar
  61. [61]
    M. Jain and T. Christman, Acta Metall. Mater. 40, p. 2490 (1994).Google Scholar
  62. [62]
    W. Tong and G. Ravichandran, in Wave Propagation and Emerging Technologies, AMD-Vol. 188 (eds. V.K. Kinra, R.J. Clifton, and G.C. Johnson), American Society of Mechanical Engineers, New York (1964).Google Scholar
  63. [63]
    J.E. Flinn, R.L. Williamson, R.A. Berry, R.N. Wright, Y.M. Gupta, and M. Williams, J. Appl. Phys. 64, pp. 1446–1456 (1988).ADSCrossRefGoogle Scholar
  64. [64]
    D.J. Benson, Comp. Methods Appl. Methods Eng. 99, pp.235–394 (1992).MathSciNetADSMATHCrossRefGoogle Scholar
  65. [65]
    D.J. Benson, Model. Simul. Mater. Sci. Eng. 2, pp. 535–550 (1994).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1997

Authors and Affiliations

  • W. Tong
  • G. Ravichandran

There are no affiliations available

Personalised recommendations