Developments in Constitutive Modeling of Shock-Induced Reactions in Powder Mixtures

  • L. S. Bennett
  • K. Tanaka
  • Y. Horie
Part of the High-Pressure Shock Compression of Condensed Matter book series (SHOCKWAVE)


Shock-induced chemical reactions in inorganic powder mixtures have been the focus of multiple experimental and computational studies due to the possibilities for new material development from high-pressure chemical reactions and the low cost of achieving high dynamic pressures [1–4]. These reactions may additionally benefit from inter-particle mass mixing and rapid thermal changes in the shock wave environment to produce fine microstructures in the product. Reactions of this sort have been shown to take place within about 100 ns (similar to explosive detonations), occur primarily within and just behind the shock front as it propagates through the powder mixture, and lead to nearly complete product formation [5–7].


Constitutive Modeling Mass Transport Copper Powder Reflect Shock Wave Solid Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R.A. Graham, Proc. 3rd International Symposium High Dynamic Pressures (ed. R. Chéret), Assoc. Française de Pyrotechnie, Paris, p. 175 (1989).Google Scholar
  2. [2]
    Y. Horie and A.B. Sawaoka, Shock Compression Chemistry of Materials, KTK Scientific Publishers, Tokyo, pp. 1–276 (1993).Google Scholar
  3. [3]
    N.N. Thadhani, Prog. Mater. Sci. 37, pp. 117–226 (1993).CrossRefGoogle Scholar
  4. [4]
    Y. Horie, Shock Waves In Material Science (ed. A.B. Sawaoka), Springer-Verlag, Tokyo, pp. 67–100 (1993).Google Scholar
  5. [5]
    S.S. Batsanov, G.S. Doronin, S.V. Klochkov, and A.I. Teut, Combust. Explosion, Shock Waves 22, pp. 765–768 (1987).CrossRefGoogle Scholar
  6. [6]
    M.B. Boslough, J. Chem. Phys. 92, pp. 1839–1849 (1990).ADSCrossRefGoogle Scholar
  7. [7]
    L.S. Bennett, F.Y. Sorrell, I.K. Simonsen, Y. Horie, and K.R. Iyer, Appl. Phys. Lett. 61, pp. 520–521 (1993).ADSCrossRefGoogle Scholar
  8. [8]
    L.S. Bennett and Y. Horie, J. Appl. Phys. 76, pp. 3394–3402 (1994).ADSCrossRefGoogle Scholar
  9. [9]
    W. Herrmann, Shock Waves in Condensed Matter—1981 (eds. W.J. Nellis, L. Seaman, and R.A. Graham), American Institute of Physics, New York, pp. 346–359 (1982).Google Scholar
  10. [10]
    W. Herrmann, J. Appl. Phys. 40, p. 2490 (1969).ADSCrossRefGoogle Scholar
  11. [11]
    J.N. Johnson, P.K. Tang, and C.A. Forest, J. Appl. Phys. 57, pp. 4323–4334 (1985).ADSCrossRefGoogle Scholar
  12. [12]
    J.N. Johnson, Proc. R. Soc. Lond. A 413, pp. 329–350 (1987).ADSCrossRefGoogle Scholar
  13. [13]
    S.R. DeGroot, Thermodynamics of Irreversible Processes, North-Holland, Amsterdam, pp. 163–194, (1951).zbMATHGoogle Scholar
  14. [14]
    M. Baer and J. Nunziato, Int. J. Multiphase Flow 12, pp. 861–889 (1986).zbMATHCrossRefGoogle Scholar
  15. [15]
    J.B. Bdzil and S.F. Son, Technical Report LA-12794-MS, Los Alamos National Laboratory (1995).Google Scholar
  16. [16]
    R. Jeanloz and R. Grover, Shock Compression of Condensed Matter—1987 (eds. S.C. Schmidt and N.C. Holmes) North-Holland, Amsterdam, pp. 69-72 (1988).Google Scholar
  17. [17]
    L.S. Bennett and Y. Horie, Shock Waves 4, pp. 127–136 (1994).ADSzbMATHCrossRefGoogle Scholar
  18. [18]
    B.R. Krueger and T. Vreeland, Jr., J. Appl. Phys. 69, p. 710 (1991).ADSCrossRefGoogle Scholar
  19. [19]
    S.P. Marsh, Los Alamos National Laboratory: Shock Hugoniot Data, University of California Press, Berkeley (1980).Google Scholar
  20. [20]
    S.B. Kormer, A.I. Funtikov, V.D. Urlin, and A.N. Kolesnikova, Sov. Phys.-JETP 15, pp. 477–488 (1962).Google Scholar
  21. [21]
    John O. Hallquist, Technical Report UCID-18756, Rev. 3, Lawrence Livermore National Laboratory, Feb. 1987.Google Scholar
  22. [22]
    Century Dynamics Incorporated, AUTODYN Users Manual, Version 2.1, Century Dynamics Inc., San Ramon, CA, (1989).Google Scholar
  23. [23]
    K.-H. Oh and P.-A. Persson, J. Appl. Phys. 65, pp. 3852–3856 (1989).ADSCrossRefGoogle Scholar
  24. [24]
    Q. Wu and F. Jing, Appl. Phys. Lett. 67, pp. 49–51 (1995).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1997

Authors and Affiliations

  • L. S. Bennett
  • K. Tanaka
  • Y. Horie

There are no affiliations available

Personalised recommendations