Advertisement

Continuum Mixture Modeling of Reactive Porous Media

  • M. R. Baer
Chapter
Part of the High-Pressure Shock Compression of Condensed Matter book series (SHOCKWAVE)

Abstract

Despite extensive studies on granular energetic materials, the shock response of mixed-phase materials remains a controversial topic in the multiphase flow literature. Much debate has centered on the formulation and derivation of conservation equations for multiphase mixtures that, at the microscale, are statistical in nature. Many of these theories are based on a continuum approximation which averages thermal, mechanical, and chemical fields for a localized collection of materials representative of a heterogeneous mixture. This approach requires that the smallest resolved length scale be considerably larger than a typical particle or pore size in the mixture. This does not imply that processes at the microscale are negligible but, rather, that interactions associated with the discrete nature of the mixture are included as submodels. As one might expect, these relationships are crucial to prediction of initiation and growth of reaction in porous energetic materials.

Keywords

Solid Volume Fraction Sandia National Laboratory Entropy Inequality Internal State Variable Multiphase Mixture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R.J. Atkins and R.E. Crane, Quart. J. Mech. Appl. Math. XXIX, pp. 209–244 (1976).CrossRefGoogle Scholar
  2. [2]
    C. Truesdell and R. A. Toupin, Handbuch der Physik III/1 (ed. S. Flugge), Springer-Verlag, Berlin (1960).Google Scholar
  3. [3]
    C. Truesdell and W. Noll, Handbuch der Physik III/3 (ed. S. Flugge), Springer-Verlag, Berlin (1965).Google Scholar
  4. [4]
    J.W. Nunziato and E.K. Walsh, Arch. Rational Mech. Anal 73, pp. 285–311 (1980).MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. [5]
    M.R. Baer and J.W. Nunziato, Int. J. Multiphase Flow 12, pp. 861–889 (1986).zbMATHCrossRefGoogle Scholar
  6. [6]
    C. Truesdell, Rational Thermodynamics, 2nd ed., Springer-Verlag, New York (1984), see Appendix 5C, pp. 286–325.zbMATHGoogle Scholar
  7. [7]
    B.D. Coleman and M.E. Gurtin, J. Chem. Phys. 47, pp. 597–613 (1967).ADSCrossRefGoogle Scholar
  8. [8]
    P.F. Embid and M.R. Baer, Multidimensional Hyperbolic Problems and Computations 29 (eds. J.G. Glimm and A.J. Majda), Springer-Verlag, New York, pp. 58–67 (1991).Google Scholar
  9. [9]
    I. Müller, Arch. Rational Mech. Analysis 28, pp 1–39 (1968).ADSzbMATHCrossRefGoogle Scholar
  10. [10]
    R.M. Bowen, Continuum Physics III (ed. A.C. Eringen), Academic Press, New York (1976).Google Scholar
  11. [11]
    J.E. Shepherd and D. Begeal, Transient Compressible Flow in Porous Materials, Technical Report SAND83–1788, Sandia National Laboratories (1983).Google Scholar
  12. [12]
    V.S. Trofimov, G.A. Adadurov, S.V. Pershin, and A.N. Dremin, Fizika Goreniya Vzryva (Combust. Explosion Shock Waves) 4 pp. 244–253 (1968).Google Scholar
  13. [13]
    A.Y. Dolgoborodov, I.M. Voskoboinikov, I.K. Tolstov, and A.V. Sudarikov, Fiz. Goreniya Vzryva (Combust. Explosion Shock Waves) 28, pp. 106–111 (1992).Google Scholar
  14. [14]
    N.A. Kostyukov, Z. Prik. Mekh. Tekh. Fiz. 1, pp. 84–91 (1990Google Scholar
  15. [15]
    D.F. McTigue, R.K. Wilson, and J.W. Nunziato, An Effective Stress Principle for Partially Saturated Media, Technical Report SAND 82-1977, Sandia National Laboratories (1984).Google Scholar
  16. [16]
    J. Kestin, in IUTAM Symposium: Irreversible Aspects of Continuum Mechanics and Transfer of Physical Characteristics in Moving Fluids, (eds. H. Parkus and L.I. Sedov) Springer-Verlag, New York, pp. 177–212 (1966).Google Scholar
  17. [17]
    J.W. Nunziato and M.R. Baer, J. Phys. 9, pp. 67–83, (1987).Google Scholar
  18. [18]
    M.R. Baer and J.W. Nunziato, in Ninth Symposium (International) on Detonation, Technical Report OCNR 113291–7, Office of the Chief of Naval Research, pp. 293–305 (1989).Google Scholar
  19. [19]
    P. Embid and M.R. Baer, Continuum Mech. Thermodynam. 4, pp. 279–312 (1992).MathSciNetADSzbMATHCrossRefGoogle Scholar
  20. [20]
    J.M. McGlaun, S.L. Thompson, L.N. Kmetyk, and M.G. Elrick, A Brief Description of the Three-Dimensional Shock Wave Physics Code CTH, Technical Report SAND89–0607, Sandia National Laboratories (1990).Google Scholar
  21. [21]
    J.M. McGlaun, CTH Reference Manual: Lagrangian Step for Hydrodynamic Materials, Technical Report SAND90–2645, Sandia National Laboratories (1990).Google Scholar
  22. [22]
    J.M. McGlaun, CTH Reference Manual: Cell Thermodynamics, Technical Report SAND91–0002, Sandia National Laboratories (1991).Google Scholar
  23. [23]
    G.I. Kerley, CTH Equation of State Package: Porosity and Reactive Burn Models, Technical Report SAN92–0553, Sandia National Laboratories (1992).Google Scholar
  24. [24]
    R.J. Gross, and M.R. Baer, A Study of Numerical Solution Methods for Two-Phase Flow, Technical Report SAND84–1633, Sandia National Laboratories (1986).Google Scholar
  25. [25]
    E.S. Oran and J.P. Boris, Numerical Simulation of Reactive Flow, Elsevier, Amsterdam, pp. 134–180 (1987).zbMATHGoogle Scholar
  26. [26]
    M.R. Baer, E.S. Hertel, and R.L. Bell, in Shock Compression of Condensed Matter-1995, (eds. S.C. Schmidt and W.C. Tao), American Institute of Physics, New York (1996).Google Scholar
  27. [27]
    G.T. Holman, R.A. Graham, and M.U. Anderson, in High-Pressure Science and Technology1993, (eds. S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross), American Institute of Physics, New York, pp. 1119–1122(1994).Google Scholar
  28. [28]
    M.U. Anderson, R.A. Graham, and G.T. Holman, in High-Pressure Science and Technology1993, (eds. S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross), American Institute of Physics, New York, pp. 1111–1114(1994).Google Scholar
  29. [29]
    E. Dunbar, R.A. Graham, and N.N. Thadhani, in High-Pressure Science and Technology1993, (eds. S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross), American Institute of Physics, New York, pp. 1303–1306 (1994).Google Scholar
  30. [30]
    M.U. Anderson and R.A. Graham, in Shock Compression of Condensed Matter1995, (eds. S.C. Schmidt and W.C. Tao), American Institute of Physics, New York, (1996).Google Scholar
  31. [31]
    S.A. Sheffield, R.L. Gustavsen, R.R. Alcon, R.A. Graham, and M.U. Anderson, in High-Pressure Science and Technology1993, (eds. S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross), American Institute of Physics, New York, pp. 1377–1380 (1994).Google Scholar
  32. [32]
    K.W. Schuler, J.W. Nunziato, and E.K. Walsh, Int. J. Solids Structures 9, pp. 1237–1281 (1973).zbMATHCrossRefGoogle Scholar
  33. [33]
    M.R. Baer and M.U. Anderson, unpublished manuscript.Google Scholar
  34. [34]
    H.W. Sandusky and R.R. Bernecker, in Eighth Symposium (International) on Detonation, Naval Surface Weapons Center Report MP 86–194, pp. 881–891 (1985).Google Scholar
  35. [35]
    B.C. Glancy, H.W. Sandusky, P.J. Miller, and A.D. Krall, in Ninth Symposium (International) on Detonation, Technical Report OCNR 113291–7, Office of the Chief of Naval Research, pp. 341–353 (1989).Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1997

Authors and Affiliations

  • M. R. Baer

There are no affiliations available

Personalised recommendations