Advertisement

Shock Loading of Porous High Explosives

  • S. A. Sheffield
  • R. L. Gustavsen
  • M. U. Anderson
Part of the High-Pressure Shock Compression of Condensed Matter book series (SHOCKWAVE)

Abstract

Porous, sometimes called distended, materials consist of solid materials and voids such that the foam or compact is less than the theoretical maximum density (TMD). Porous high explosives (HEs) are compacts made by pressing (consolidating) crystals or multicrystal-line agglomerates together. The compact density may be as little as 50% or as much as 99% of the density of the solid material. Explosives used for munitions as well as blasting are often made in this way. Shock-loading studies of porous materials, particularly metals, have been done over the years and there are a number of papers in the literature (both English and Russian) dealing with this. In this chapter, however, we will concentrate on HE materials and discuss only studies with direct application.

Keywords

Impact Velocity Detonation Velocity Shock Loading Velocity Deficit Hugoniot Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ray Engelke and S.A. Sheffield, in Encyclopedia of Applied Physics, Vol. 6, (ed. G.L. Trigg), VCH Publishers, Inc., New York, p. 327 (1993).Google Scholar
  2. [2]
    M.R. Baer, this volume, Chapter 3.Google Scholar
  3. [3]
    S.A. Sheffield, R.L. Gustavsen, R.R. Alcon, R.A. Graham, and M.U. Anderson, in Proceedings of the the Tenth Symposium (International) on Detonation, Technical Report ONR 33395–12, Office of Naval Research, p. 166 (1993).Google Scholar
  4. [4]
    S.A. Sheffield, R.L. Gustavsen, R.R. Alcon, R.A. Graham, and M.U. Anderson, in High Pressure Science and Technology-1993, (eds. S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross), American Institute of Physics, New York, p. 1377 (1994).Google Scholar
  5. [5]
    R.L. Gustavsen, S.A. Sheffield, and R.R. Alcon, in Shock Compression of Condensed Matter-1995, (eds. S.C. Schmidt and W.C. Tao), American Institute of Physics, New York, p. 851 (1996).Google Scholar
  6. [6]
    J.M. McAfee, B.W. Asay, A.W. Campbell, and J.B. Ramsay, in Ninth Symposium (International) on Detonation, Office of the Chief of Naval Research Report OCNR-113291–7, p. 265 (1989).Google Scholar
  7. [7]
    M.R. Baer and J.W. Nunziato, in Ninth Symposium (International) on Detonation, Office of the Chief of Naval Research Report OC-NR 113291–7, p. 293(1989).Google Scholar
  8. [8]
    M.R. Baer, E.S. Hertel, and R.L. Bell, in Shock Compression of Condensed Matter-1995, (eds. S.C. Schmidt and W.C. Tao), American Institute of Physics, New York, p. 433 (1996).Google Scholar
  9. [9]
    A.K. Kapila, S.F. Son, J.B. Bdzil, R. Menikoff, and D.S. Stewart, submitted to Phys. Fluids.Google Scholar
  10. [10]
    J.B. Bdzil, S.F. Son, R. Menikoff, A.K. Kapila, and D.S. Stewart, unpublished manuscript (1996).Google Scholar
  11. [11]
    M.B. Boslough and JR. Asay, in High-Pressure Shock Compression of Solids, (eds. J.R. Asay and M. Shahinpoor), Springer-Verlag, New York, p. 7 (1993).CrossRefGoogle Scholar
  12. [12]
    L.M. Barker, J. Composite Mater. 5, p. 140 (1971).ADSCrossRefGoogle Scholar
  13. [13]
    A.N. Dremin, K.K. Shvedov, and O.S. Avdonin, Combust. Explosion Shock Waves 6, p. 449 (1970). Also L.V. Al’tschuler, K.K. Krupnikov, B.N. Ledenev, V.I. Zhuchikhin and M.I. Brazhnik, Soviet Phys.-JETP, 34, p. 606 (1958); Ya.B. Zel’dovich and Yu.P. Raizer, Physics of Shock Waves and High Temperature Hydrodynamic Phenomena, Academic Press, New York (1966).CrossRefGoogle Scholar
  14. [14]
    I.E. Lindstrom, J. Appl. Phys. 41, p. 337 (1970).ADSCrossRefGoogle Scholar
  15. [15]
    J.O. Erkman and D.J. Edwards, in Proceedings of the Sixth Symposium (International) on Detonation, Office of Naval Research Report ACR-221, p.766 (1976).Google Scholar
  16. [16]
    S.A. Sheffield, D.E. Mitchell, and D.B. Hayes, in Proceedings of the Sixth Symposium (International) on Detonation, Office of Naval Research Report ACR-221, p. 748 (1976).Google Scholar
  17. [17]
    W. Herrmann, J. Appl. Phys. 40, p. 2490 (1969).ADSCrossRefGoogle Scholar
  18. [18]
    J.W. Swegle, J. Appl. Phys. 51, p. 2547 (1980).CrossRefGoogle Scholar
  19. [19]
    M.M. Carroll and A.C. Holt, J. Appl. Phys. 45, p. 3864 (1974).ADSCrossRefGoogle Scholar
  20. [20]
    J.N. Johnson and S.J. Green, in The Effects of Voids on Material Deformation, (eds. S. C. Cowin and M.M. Carroll) American Society of. Mechanical Engineers, New York, p. 93 (1976). See also references contained in this review article.Google Scholar
  21. [21]
    R.E. Setchell and P.A. Taylor, J. Energetic Mater. 6, p. 157 (1988).CrossRefGoogle Scholar
  22. [22]
    R. Fowles, J. Appl. Phys. 39, p. 2973 (1968).ADSCrossRefGoogle Scholar
  23. [23]
    F.D. Murnaghan, Finite Deformation of an Elastic Solid, Wiley, New York, p. 73 (1951).zbMATHGoogle Scholar
  24. [24]
    R.L. Gustavsen and S.A. Sheffield, in High Pressure Science and Technology-1993 (eds. S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross), American Institute of Physics, New York, p. 1393 (1994).Google Scholar
  25. [25]
    B. Olinger, B. Roof, and H. Cady, in Behavior of Dense Media Under High Dynamic Pressures, Symposium H. D. P, Gordon and Breach, New York, p. 3(1978).Google Scholar
  26. [26]
    S.P Marsh (ed.), LASL Shock Hugoniot Data, University of California Press, Berkeley, p. 596 (1980).Google Scholar
  27. [27]
    In [26], p. 611.Google Scholar
  28. [28]
    J.J. Dick, J. Energetic Mater. 1, p. 275 (1983).CrossRefGoogle Scholar
  29. [29]
    B. Olinger and H. Cady, in Proceedings of the Sixth Symposium (International) on Detonation, Office of Naval Research Report ACR-221, p. 704 (1976).Google Scholar
  30. [30]
    In [26], pp. 618–622.Google Scholar
  31. [31]
    J. Wackerle and J.O. Johnson, Technical Report LA-5131, Los Alamos Scientific Laboratory (1973).Google Scholar
  32. [32]
    J. Wackerle, J.O. Johnson, and P.M. Halleck, Bull. Am. Phys. Soc. 19, p. 20 (1975).Google Scholar
  33. [33]
    T.R. Gibbs and A. Popolato (eds.) LASL Explosive Property Data, University of California Press, Berkeley, p. 599 (1980).Google Scholar
  34. [34]
    J.J. Dick, Combust. Flame 54, p. 121 (1983).CrossRefGoogle Scholar
  35. [35]
    J.J. Dick, Combust. Flame 69, p. 257 (1987).CrossRefGoogle Scholar
  36. [36]
    J.N. Johnson, A Theory of Rate-Dependent Behavior for Porous Solids: Steady-Propagating Compaction Wave Profiles, Technical Report SC-RR-68–151, Sandia National Laboratories (1968).Google Scholar
  37. [37]
    G.E. Seay and L.B. Seely, Jr., J. Appl. Phys. 32, p. 1092 (1961).ADSCrossRefGoogle Scholar
  38. [38]
    M.W. Evans, B.O. Reese, L.B. Seely, and E.L. Lee, in Proceedings of the Fourth Symposium (International) on Detonation, Office of Naval Research Report ACR-126, p. 359 (1965).Google Scholar
  39. [39]
    A.N. Dremin, S.A. Koldunov, and K.K. Shvedov, Combust. Explosion Shock Waves 7(1), p. 87 (1971).CrossRefGoogle Scholar
  40. [40]
    J. Wackerle, J.O. Johnson, and P M. Halleck, in Proceedings of the Sixth Symposium (International) on Detonation, Office of Naval Research Report ACR-221, p. 20 (1976).Google Scholar
  41. [41]
    D.B. Hayes and D.E. Mitchell, in Behavior of Dense Media Under High Dynamic Pressures, Symposium H. D. P, Gordon and Breach, New York, p. 161 (1978).Google Scholar
  42. [42]
    J.B. Ramsay and A. Popolato, in Proceedings of the Fourth Symposium (Intl.) on Detonation, Office of Naval Research Report ACR-126, p. 233 (1965).Google Scholar
  43. [43]
    In [33], pp. 93, 359–366.Google Scholar
  44. [44]
    D. Stirpe, J.O. Johnson, and J. Wackerle, J. Appl. Phys. 41, p. 3884 (1970).ADSCrossRefGoogle Scholar
  45. [45]
    W. Seitz, in Shock Waves in Condensed Matter-1983, (eds. J.R. Asay, R.A. Graham, and G.K. Straub), Elsevier Science Publishers B.V. Amsterdam, p. 531 (1984).Google Scholar
  46. [46]
    H. Moulard, in Proceedings of the Ninth Symposium (International) on Detonation, Office of Naval Research Report ACR-221, p. 18 (1993).Google Scholar
  47. [47]
    A.C. Schwarz, Sandia National Laboratories, private communication. A slapper detonator consists of an electrically exploded metal foil driving a plastic flyer (usually Kapton) to high velocity (up to 5 km/s). The thin plastic flyer impacts an HE pellet, causing it to detonate if the flyer velocity and thickness are sufficient. Threshold values between detonation and no detonation (go—no go) are usually established for an HE. These data were generated by Schwarz for HNS of different particle sizes.Google Scholar
  48. [48]
    A.W. Campbell, W.C. Davis, and J.R. Travis, Phys. Fluids 4, pp. 498–510 (1961).ADSCrossRefGoogle Scholar
  49. [49]
    A.W. Campbell, W.C. Davis, J.B. Ramsay, and J.R. Travis, Phys. Fluids 4, pp. 511–521 (1961).ADSCrossRefGoogle Scholar
  50. [50]
    R. Engelke and J.B. Bdzil, Phys. Fluids 26, p. 1210 (1983).ADSCrossRefGoogle Scholar
  51. [51]
    R. Engelke, Phys. Fluids 26, p. 2420 (1983).ADSCrossRefGoogle Scholar
  52. [52]
    A.W. Campbell and R. Engelke, in Proceedings of the Sixth Symposium (International) on Detonation, Office of Naval Research Report ACR-221, p. 642(1976).Google Scholar
  53. [53]
    L.N. Stesik and L.N. Akimova, Russ. J. Phys. Chem. 33(8), p. 148 (1959).Google Scholar
  54. [54]
    R. Engelke, Phys. Fluids 22, p. 1623 (1979).ADSCrossRefGoogle Scholar
  55. [55]
    D. Price, A.R. Clairmont Jr., and I. Jaffe, Combust. Flame 11, p. 415 (1967).CrossRefGoogle Scholar
  56. [56]
    D. Price, A.R. Clairmont Jr., J.O. Erkman, and D.J. Edwards, Combust. Flame 13, p. 104 (1969).CrossRefGoogle Scholar
  57. [57]
    H.C. Hornig, E.L. Lee, M. Finger, J.E. Kurrle, in Proceedings of Fifth Symposium (International) on Detonation, Office of Naval Research Report ACR-221, p. 503 (1970).Google Scholar
  58. [58]
    B.M. Dobratz, and P.C. Crawford, LLNL Explosives Handbook, Technical Report UCRL-52997, Lawrence Livermore National Laboratory, pp. 8–6–8–8(1985).Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1997

Authors and Affiliations

  • S. A. Sheffield
  • R. L. Gustavsen
  • M. U. Anderson

There are no affiliations available

Personalised recommendations