Advertisement

Magnetic Response of Powders to Shock Loading and Fabrication of Nanocrystalline Magnets

  • K. Kondo
Part of the High-Pressure Shock Compression of Condensed Matter book series (SHOCKWAVE)

Abstract

Fabrication of materials of metastable phases and/or metastable microstructures is difficult using conventional sintering methods. This is because the conventional processes are driven by the difference of chemical potential and are slow enough that recrystallization to stable phases and grain growth by means of mass transport can follow in the time afforded by the process. Shock-compaction techniques, on the other hand, can consolidate powders without recrystallization or grain growth under the optimum conditions in which only the surfaces of the powder particles fuse, solidify, and join each other within the brief duration of the shock loading, typically 1 μs [1–10].

Keywords

Shock Wave Magnetic Flux Shock Compression Shock Loading Magnetic Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K. Kondo, S. Soga, A. Sawaoka, and M. Araki, J. Mater. Sci. 20 pp. 1033–1048 (1985).ADSCrossRefGoogle Scholar
  2. [2]
    K. Kondo, S. Soga, E. Rapoport, A. Sawaoka, and M. Araki, J. Mater. Sci. 21, pp. 1579–1590 (1986).ADSCrossRefGoogle Scholar
  3. [3]
    K. Kondo and S. Sawai, J. Amer. Ceram. Soc. 73, pp. 1983–1991 (1990).CrossRefGoogle Scholar
  4. [4]
    S. Sawai and K. Kondo, J. Amer. Ceram. Soc. 73, pp. 2428–2434 (1990).CrossRefGoogle Scholar
  5. [5]
    K. Kondo, J. Amer. Ceram. Soc. 74, pp. 1762–1763 (1991).CrossRefGoogle Scholar
  6. [6]
    V.D. Linse, Dynamic Compaction of Metal and Ceramic Powders, National Materials Advisory Board, NMAB-394, National Academy Press, Washington, D.C. (1983).Google Scholar
  7. [7]
    W.H. Gourdin, J. Appl. Phys. 55, pp. 172–181 (1984).ADSCrossRefGoogle Scholar
  8. [8]
    R.B. Schwarz, P. Kasiraj, T. Vreeland, Jr., and T.J. Ahrens, Acta Metall. 32, pp. 1243–1252 (1984).CrossRefGoogle Scholar
  9. [9]
    K. Kondo and S. Sawai, J. Amer. Ceram. Soc. 75, pp. 253–256 (1992).CrossRefGoogle Scholar
  10. [10]
    K. Kondo, S. Kukino, and H. Hirai, J. Amer. Ceram. Soc., in press.Google Scholar
  11. [11]
    K. Kondo, H. Hirai, and H. Oda, Jpn. J. Appl. Phys. 33, pp. 2079–2086 (1994).ADSCrossRefGoogle Scholar
  12. [12]
    H. Oda, H. Hirai, K. Kondo, and T. Sato, J. Appl. Phys. 76, pp. 3381–3386 (1994).ADSCrossRefGoogle Scholar
  13. [13]
    H. Oda, T. Sato, and K. Kondo, Appl. Phys. Lett. 66, pp. 379–381 (1995).ADSCrossRefGoogle Scholar
  14. [14]
    R.G. McQueen, S.P. Marsh, J.W. Taylor, J.N. Fritz, and W.J. Carter, in High-Velocity Impact Phenomena (ed. R. Kinslow), Academic Press, New York, pp. 293–417 (1970).Google Scholar
  15. [15]
    R.R. Boade, in Shock Waves and the Mechanical Properties of Solids, (eds. J.J. Burke and V. Weiss), Syracuse University Press, Syracuse, NY, pp. 263–285 (1971).Google Scholar
  16. [16]
    E.B. Royce, J. Appl. Phys. 37, pp. 4066–4070 (1966).ADSCrossRefGoogle Scholar
  17. [17]
    D.E. Grady, J. Appl. Phys. 43, pp. 1942–1948 (1972).ADSCrossRefGoogle Scholar
  18. [18]
    D.E. Grady and G.E. Duvall, J. Appl. Phys. 43, pp. 1948–1955 (1972).ADSCrossRefGoogle Scholar
  19. [19]
    R.A Graham, J. Appl. Phys. 39, pp. 437–439 (1968).ADSCrossRefGoogle Scholar
  20. [20]
    R.A Graham, D.H. Anderson, and J.R. Holland, J. Appl. Phys. 38, pp. 223–229 (1967).ADSCrossRefGoogle Scholar
  21. [21]
    R.C. Wayne, J. Appl. Phys. 40, pp. 15–22 (1969).ADSCrossRefGoogle Scholar
  22. [22]
    T. Takahashi, and W. A. Bassett, Science 145, pp. 483–486 (1964).ADSCrossRefGoogle Scholar
  23. [23]
    K. Kondo, High Pressure Res. 10, pp. 747–757 (1992).ADSCrossRefGoogle Scholar
  24. [24]
    K. Kondo, Y. Yasumoto, H. Sugiura, and A. Sawaoka, J. Appl. Phys. 53, pp. 772–776 (1981).ADSCrossRefGoogle Scholar
  25. [25]
    L.I. Mendelsohn, F.E. Luborsky, and T.O. Paine, J. Appl. Phys. 26, pp. 1274–1280 (1955).ADSCrossRefGoogle Scholar
  26. [26]
    F.E. Luborsky, J. Appl. Phys. 32, pp. 171S–183S (1961).ADSCrossRefGoogle Scholar
  27. [27]
    R.B. Falk, J. Appl. Phys. 37, pp. 1108–1112 (1966).ADSCrossRefGoogle Scholar
  28. [28]
    F.E. Luborsky, L.I. Mendelsohn, and T.O. Paine, J. Appl. Phys. 28, pp. 344–351 (1957).ADSCrossRefGoogle Scholar
  29. [29]
    R.B. Falk, G.D. Hooper, and R.J. Studders, J. Appl. Phys. 30, pp. 132S–133S (1959).ADSCrossRefGoogle Scholar
  30. [30]
    R.C. Lever, E.J. Yamartino, and R.B. Falk, J. Appl. Phys. 29, pp. 304–307 (1958).ADSCrossRefGoogle Scholar
  31. [31]
    H. Oda, K. Kondo, H. Uchida, Y. Matsumura, S. Tachibana, and T. Kwanabe, Jpn. J. Appl. Phys. 34, pp. 35–37 (1995).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1997

Authors and Affiliations

  • K. Kondo

There are no affiliations available

Personalised recommendations