Advertisement

Abstract

Shock synthesis is a process for preparing materials by shock compression of the reactants; it is a special kind of high-pressure and high-temperature chemical synthesis. All solids subjected to passage of a shock wave display physical and chemical changes, usually varying with the strength of the shock wave. These changes occur during the shock process, including both its compression and release portions. The process is uniquely different from quasi-static loading and can be related not only to the pressure and temperature effects but also to the rates at which the temperature and pressure rise and fall, and to the duration of pressure application. It is noteworthy that samples in the postshock condition contain both high-temperature phases and modified low-pressure phases. Shock compression generates high temperature because the process is adiabatic and produces an entropy increase in the system.

Keywords

Boron Nitride Shock Compression Diamond Particle Shock Pressure Carbon Nitride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D.G. Morris, J. Appl. Phys. 51, pp. 2059–2065 (1980).ADSCrossRefGoogle Scholar
  2. [2]
    Y. Horie and A.B. Sawaoka, Shock Compression Chemistry of Materials, KTK Scientific Publishers, Tokyo (1993).Google Scholar
  3. [3]
    M. Kikuchi, Y. Syono, K. Fukuoka, and K. Hiraga, J. Mater. Sci. Lett. pp. 97–99 (1987).Google Scholar
  4. [4]
    M. Kikuchi, Y. Syono, N. Shimoda, K. Fukuoka, and K. Hiraga, in Shock Waves in Condensed Matter-1987 (eds. S.C. Schmidt and N.C. Holmes), North-Holland, Amsterdam, pp. 443–446 (1988).Google Scholar
  5. [5]
    T. Sekine, Proc. Jpn. Acad. 68B, pp. 95–99 (1992).CrossRefGoogle Scholar
  6. [6]
    A.B. Sawaoka (ed.), Shock Waves in Materials Science, Springer-Verlag, Tokyo, pp. 1–16 (1993).Google Scholar
  7. [7]
    M.H. Rice, R.G. McQueen, and J.M. Walsh, in Solid State Physics 6 (eds. F. Seitz and D. Turnbull), Academic Press, New York, pp. 1–63 (1958).Google Scholar
  8. [8]
    R.G. McQueen, and S.P. Marsh, J. Appl. Phys. 31, pp. 1253–1269 (1960).ADSCrossRefGoogle Scholar
  9. [9]
    T. Sekine, J. Mater. Sci. Lett. 8, pp. 872–874 (1989).CrossRefGoogle Scholar
  10. [10]
    D.G. Doran, J. Appl. Phys. 34, pp. 844–851 (1963).ADSCrossRefGoogle Scholar
  11. [11]
    N.L. Coleburn, J. Chem. Phys. 40, pp. 71–77 (1964).ADSCrossRefGoogle Scholar
  12. [12]
    W.H. Gust, Phys. Rev. B22, pp. 4744–4756 (1980).ADSGoogle Scholar
  13. [13]
    S.P. Marsh (ed.), LASL Shock Hugoniot Data, University of California Press, Berkeley (1980).Google Scholar
  14. [14a]
    D.J. Erskine and W.J. Nellis, J. Appl. Phys. 71, pp. 4882–4886 (1992);ADSCrossRefGoogle Scholar
  15. [14b]
    D.J. Erskine and W.J. Nellis, Nature 349, pp. 317–319 (1991).ADSCrossRefGoogle Scholar
  16. [15]
    L.F. Trueb, J. Appl. Phys. 39, pp. 4707–4716 (1968).ADSCrossRefGoogle Scholar
  17. [16]
    E.J. Wheeler and D. Lewis, Mater. Res Bull. 10, pp. 687–694 (1975).CrossRefGoogle Scholar
  18. [17]
    F.P. Bundy and J.S. Kasper, J. Chem Phys. 46, pp. 3437–3447 (1967).ADSCrossRefGoogle Scholar
  19. [18]
    T. Sekine et al. unpublished data.Google Scholar
  20. [19]
    M.A. Podurets, A.I. Barenboym, Zh.N. Yeleimova, V.V. Pul’, and R.F. Trunin, Izvestiya Earth Phys. 27, pp. 78–81 (1991).Google Scholar
  21. [20]
    N. Setaka and Y. Sekikawa, J. Mater. Sci. 16, pp. 1728–1729 (1981).ADSCrossRefGoogle Scholar
  22. [21]
    V.I. Trefilov, G.I. Sawakin, V.V. Skorokhod, Yu.M. Solonin, and A.F. Khrienko, Sov. Phys. Dokl. 23, pp. 269–271 (1978).ADSGoogle Scholar
  23. [22]
    N.I. Borimchuk, V.B. Zelyavskii, A.V. Kurdyumov, N.F. Ostrovskaya, V.I. Trefdov, and V.V. Yarosh, Sov. Phys. Dokl. 36, pp. 783–785 (1991).ADSGoogle Scholar
  24. [23]
    T. Sekine and T.J. Ahrens, in Shock Compression of Condensed Matter-1991 (eds. S. C. Schmidt, T. R. Dick, J. W. Forbes, D.G. Tasker), Elsevier, Amsterdam, pp. 57–60 (1992).Google Scholar
  25. [24]
    O.R. Bergmann and N.F. Baily, in High Pressure Explosive Processing of Ceramics (ed. R. A. Graham and A. B. Sawaoka), Trans Tech Publishers, Andermanndorf, Switzerland, pp. 65–85 (1987).Google Scholar
  26. [25]
    N.R. Greiner, D.S. Phillips, J.D. Johnson, and F.Volk, Nature 333, pp. 440–442 (1989).ADSCrossRefGoogle Scholar
  27. [26]
    A.I. Lyamkin, E.A. Petrov, A.P. Ershov, G.V. Sakovich, A.M. Staver, and V.M. Titov, Sov. Phys.—Dokl. 33, pp. 705–706 (1988).ADSGoogle Scholar
  28. [27]
    A.L. Vereshchagin, G.V. Sakovich, L.A. Petrova, V.V. Novoselov, and P.M. Brylyakov, Sov. Phys.—Dokl. 35, pp. 917–918 (1990).ADSGoogle Scholar
  29. [28]
    A.M. Staver, N.V. Gubareva, A.I. Lyamkin, and E.A. Petrov, Combust. Explosion Shock Waves 20, pp. 567–570 (1984).CrossRefGoogle Scholar
  30. [29]
    S. Oinuma, K. Tanaka, M. Iida, Y. Nakayama, and T. Matsunaga, in Shock Compression of Condensed Matter-1989 (eds. S.C. Schmidt, J.N. Johnson, and L.W. Davison), Elsevier, Amsterdam, pp. 705–708 (1990).Google Scholar
  31. [30]
    C.S. Yoo, and W.J. Nellis, Science 254, pp. 1489–1491 (1991).ADSCrossRefGoogle Scholar
  32. [31]
    C.S. Yoo, W.J. Nellis, M.L. Sattler, and R.G. Musket, Appl. Phys. Lett. 61, pp. 273–275 (1992).ADSCrossRefGoogle Scholar
  33. [32]
    F.H. Ree, J. Chem. Phys. 70, pp. 974–983 (1979).ADSCrossRefGoogle Scholar
  34. [33]
    R.D. Dick, J. Chem. Phys. 71, pp. 3203–3212 (1979).ADSCrossRefGoogle Scholar
  35. [34]
    W.J. Nellis, F.H. Ree, R.J. Trainor, A.C. Mitchell, and M.B. Boslough, J. Chem. Phys. 80, pp. 2789–2799 (1984).ADSCrossRefGoogle Scholar
  36. [35]
    S.V. Pershin, S.V. Pyaternev, and A.I. Rogacheva, Combust. Explosion Shock Waves 21, pp. 637–639 (1985).CrossRefGoogle Scholar
  37. [36]
    V.F. Anichkin, I.Yu. Mal’kov, and V.M. Titov, Sov. Phys.—Dokl. 33, pp. 862–863 (1988).ADSGoogle Scholar
  38. [37]
    T. Sekine, J. Mater. Sci. Lett. 8, pp. 61–64 (1989).CrossRefGoogle Scholar
  39. [38a]
    S. Yamaguchi and N. Setaka, Naturwiss. 66, p. 50 (1979);ADSCrossRefGoogle Scholar
  40. [38b]
    S. Yamaguchi and N. Setaka, J. Electrochem. Soc. 127, pp. 245–246 (1980).CrossRefGoogle Scholar
  41. [39]
    T. Sekine, Naturewiss. 75, pp. 462–463 (1988).ADSCrossRefGoogle Scholar
  42. [40]
    T. Sekine, unpublished data.Google Scholar
  43. [41]
    T. Soma, A. Sawaoka, and S. Saito, Mater. Res. Bull. 9, pp. 755–762 (1974).CrossRefGoogle Scholar
  44. [42]
    T. Sato, T. Ishii, and N. Setaka, J. Amer. Ceram. Soc. 65, pp. C–162 (1982).CrossRefGoogle Scholar
  45. [43]
    T. Sekine and T. Sato, J. Appl. Phys. 74, pp. 2440–2444 (1993).ADSCrossRefGoogle Scholar
  46. [44]
    W.H. Gust and D.A. Young, Phys. Rev. B15, pp. 5012–5022 (1977).ADSGoogle Scholar
  47. [45]
    A.V. Kurdyumov, N.F. Ostrovskaya, V.A. Pilipenko, A.N. Pilyankevich, G.I. Sawakin, and V.I. Trefilov, Sov. Phys.—Dokl. 24, pp. 487–489 (1979).ADSGoogle Scholar
  48. [46]
    T. Sekine, in Shock Compression of Condensed Matter-1989 (eds. S.C. Schmidt, J.N. Johnson, and L.W. Davison), Elsevier, Amsterdam, pp. 511–514(1990).Google Scholar
  49. [47]
    N.I. Borimchuk, V.B. Zelyavskii, A.V. Kurdyumov, V.A. Mel’nikova, A.N. Pilyankevich, I.G. Rogovaya, and V.V. Yarosh, Sov. Phys.—Dokl. 34, pp. 566–567 (1989).ADSGoogle Scholar
  50. [48]
    T. Sato and T. Sekine, in Symposium on Shock Waves, Japan ’94, pp. 223–226 (1994) (in Japanese).Google Scholar
  51. [49]
    A.R. Badzian, Mater. Res. Bull. 16, pp. 1385–1393 (1981).CrossRefGoogle Scholar
  52. [50]
    T. Sasaki, M. Akaishi, S. Yamaoka, Y. Fujiki, and T. Oikawa, Chem. Mater. 5, pp. 695–699 (1993).CrossRefGoogle Scholar
  53. [51]
    S. Nakano, M. Akaishi, T. Sasaki, and S. Yamaoka, Chem. Mater. 6, pp. 2246–2251 (1994).CrossRefGoogle Scholar
  54. [52]
    Y. Kakudate, M. Yoshida, S. Usuba, H. Yokoi, S. Fujiwara, M. Kawaguchi, K. Sako, and T. Sawai, Trans. Mater. Res. Soc. Jpn. 14B, pp. 1447–1450 (1994).Google Scholar
  55. [53a]
    A.Y. Liu and M.L. Cohen, Science 254, pp. 841–842 (1989);ADSCrossRefGoogle Scholar
  56. [53b]
    A.Y. Liu and M.L. Cohen, Phys. Rev. B41, pp. 10727–10734 (1990).ADSGoogle Scholar
  57. [54]
    M.R. Wixom, J. Amer. Ceram. Soc. 73, pp. 1973–1978 (1990).CrossRefGoogle Scholar
  58. [55]
    R. H. Bentrof, Jr., J. Phys. Chem. 69, pp. 3063–3069 (1965).CrossRefGoogle Scholar
  59. [56]
    T. Sekine, H. Kanda, Y. Bando, M. Yokoyama, and K. Hojou, J. Mater. Sci. Lett. 9, pp. 1376–1378 (1990).CrossRefGoogle Scholar
  60. [57]
    D.M. Bibby, in Chemistry and Physics of Carbon 18 (ed. P.A. Thrower), Marcel Dekker, New York, pp. 1–91 (1982).Google Scholar
  61. [58]
    C. Niu, Y.Z. Lu, and CM. Lieber, Science 261, pp. 334–337 (1993).ADSCrossRefGoogle Scholar
  62. [59]
    T.J. Ahrens, Science 207, pp. 1035–1041 (1980).ADSCrossRefGoogle Scholar
  63. [60]
    R.F. Trunin, V.I. Gon’shakova, G.V. Simakov, and N.E. Galdin, Izv. Earth Phys., pp. 1–12 (1965).Google Scholar
  64. [61]
    P.S. DeCarli and D.J. Milton, Science 147, pp. 144–145 (1965).ADSCrossRefGoogle Scholar
  65. [62]
    A.A. Deribas, N.L. Dobretsov, V.M. Kudinov, and N.I. Zyuzin, Dokl. Akad. Nauk SSSR 168 (1966), pp. 127–130.Google Scholar
  66. [63]
    T. Sekine, M. Akaishi, and N. Setaka, Geochim. Cosmochim. Acta 51, pp. 379–381 (1987).ADSCrossRefGoogle Scholar
  67. [64]
    H. Mori, J. Mineral. Soc. Jap. 23, pp. 171–178 (1994) (in Japanese).CrossRefGoogle Scholar
  68. [65]
    R.A. Binns, R.J. Davis, and S.J.B. Reed, Nature 221, pp. 943–944 (1969).ADSCrossRefGoogle Scholar
  69. [66]
    R.A. Binns, Earth Planet. Interiors 3, pp. 156–160 (1970).ADSCrossRefGoogle Scholar
  70. [67]
    A. Putnis and G.D. Price, Nature 280, pp. 217–218 (1979).ADSCrossRefGoogle Scholar
  71. [68]
    G.D. Price, A. Putnis, and S.O. Agrell, Contr. Mineral. Petrol. 71, pp. 211–218(1979).ADSCrossRefGoogle Scholar
  72. [69]
    J.V. Smith and B. Mason, Science 168, pp. 832–833 (1970).ADSCrossRefGoogle Scholar
  73. [70]
    L.C. Coleman, Can. Mineral. 15, pp. 97–101 (1979).Google Scholar
  74. [71]
    N.Z. Boctor, P.M. Bell, H.K. Mao, and G. Kullerud, Geochim. Cosmochim. Acta 46, pp. 1903–1911 (1982).ADSCrossRefGoogle Scholar
  75. [72]
    O.B. James, Science 165, pp. 1005–1008 (1969).ADSCrossRefGoogle Scholar
  76. [73]
    R.B. Heimann, J. Kleiman, and N.M. Salansky, Carbon 22, pp. 147–155 (1984).CrossRefGoogle Scholar
  77. [74]
    A.G. Whittaker, Science 200, pp. 763–764 (1978).ADSCrossRefGoogle Scholar
  78. [75]
    N. Setaka and Y. Sekikawa, J. Amer. Ceram. Soc. 63, pp. 238–239 (1980).CrossRefGoogle Scholar
  79. [76]
    J. Kleiman, R.B. Heimann, D. Hawken, and N.M. Salansky, J. Appl. Phys. 56, pp. 1440–1454 (1984).ADSCrossRefGoogle Scholar
  80. [77]
    D. Stöffler, Fortschr. Mineral. 49, pp. 50–113 (1992).Google Scholar
  81. [78]
    P.S. DeCarli and J.C. Jamieson, Science 133, pp. 1821–1822 (1961).ADSCrossRefGoogle Scholar
  82. [79]
    G.A. Adadurov, Z.G. Aliev, L.O. Atovmyan, T.V. Barina, Yu.G. Borod’ko, O.N. Breusov, A.N. Dremin, A.Kh. Murahevich, and S.V. Pershin, Sov. Phys.—Dokl. 12, pp. 173–175 (1967).ADSGoogle Scholar
  83. [80]
    T. Mashimo, S. Tashiro, T. Toya, M. Nishida, H. Yamazaki, S. Yamaya, K. Ohishi, and Y. Syono, J. Mater. Sci. 28, pp. 3439–3443 (1993).ADSCrossRefGoogle Scholar
  84. [81]
    K. Kusaba, Y. Syono, M. Kikuchi, and K. Fukuoka, Earth Planet. Sci. Lett. 72, pp. 433–439 (1985).ADSCrossRefGoogle Scholar
  85. [82]
    T. Sekine, M. Akaishi, and N. Setaka, in Shock Waves in Condensed Matter-1987 (eds. S.C. Schmidt and N.C. Holmes). Elsevier Science Publisher B.V., Amsterdam, pp. 427–430 (1988).Google Scholar
  86. [83]
    M. Mitomo and N. Setaka, J. Mater. Sci. Lett. 16, pp. 851–852 (1981).ADSGoogle Scholar
  87. [84]
    M. Kikuchi, K. Kusaba, K. Fukuoka, and Y. Syono, J. Solid State Chem. 63, pp. 386–390 (1986).ADSCrossRefGoogle Scholar
  88. [85]
    Y. Syono, M. Kikuchi, T. Goto, and K. Fukuoka, J. Solid State Chem. 50, pp. 133–137 (1983).ADSCrossRefGoogle Scholar
  89. [86]
    K. Kusaba, M. Kikuchi, K. Fukuoka, and Y. Syono, Phys. Chem. Mineral. 15, pp. 238–245 (1988).ADSCrossRefGoogle Scholar
  90. [87]
    H. Hirai and K. Kondo, Proc. Jpn. Acad. 67B, pp. 22–26 (1991).CrossRefGoogle Scholar
  91. [88]
    N.L. Carter and G.C. Kennedy, J. Geophys. Res. 69, pp. 2403–2421 (1964).ADSCrossRefGoogle Scholar
  92. [89]
    G.P. Vdovykin, Space Sci. Rev. 10, pp. 483–510 (1970).ADSCrossRefGoogle Scholar
  93. [90]
    E.C.T. Chao, E.M. Shoemaker, and B.M. Madsen, Science 132, pp. 220–222 (1960).ADSCrossRefGoogle Scholar
  94. [91]
    E.C.T. Chao, J.J. Fahey, and J. Littler, J. Geophys. Res. 67, pp. 419–421 (1962).ADSCrossRefGoogle Scholar
  95. [92]
    M. Jakubith and U. Hornemann, Phys. Earth Planet. Interiors 27, pp. 95–99 (1981).ADSCrossRefGoogle Scholar
  96. [93]
    M. Jakubith and P. Seidel, Geophys. Res. Lett. 9, pp. 408–411 (1982).ADSCrossRefGoogle Scholar
  97. [94]
    Y. Syono, T. Goto, H. Takei, M. Tokonami, and K. Nobugai, Science 214, pp. 177–179 (1981).ADSCrossRefGoogle Scholar
  98. [95]
    R. Jeanloz, T.J. Ahrens, J.S. Lally, G.L. Nord, Jr., J.M. Christie, and A.H. Heuer, Science 197, pp. 457–459 (1977).ADSCrossRefGoogle Scholar
  99. [96]
    H. Schnider and U. Hornemann, Earth Planet. Sci. Lett. 36, pp. 322–324 (1977).ADSCrossRefGoogle Scholar
  100. [97]
    D. Stöffler and U. Hornemann, Meteoritics 7, pp. 371–394 (1972).ADSGoogle Scholar
  101. [98]
    R.V. Gibbons and T.J. Ahrens, Phys. Chem. Minerals 1, pp. 95–107 (1977).ADSCrossRefGoogle Scholar
  102. [99]
    Q. Johnson and A.C. Mitchell, Phys. Rev. Lett. 29, pp. 1369–1371 (1972).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1997

Authors and Affiliations

  • T. Sekine

There are no affiliations available

Personalised recommendations