Skip to main content

Materials Issues in Shock-Compression-Induced Chemical Reactions in Porous Solids

  • Chapter
High-Pressure Shock Compression of Solids IV

Part of the book series: High-Pressure Shock Compression of Condensed Matter ((SHOCKWAVE))

Abstract

The presence of “structural defects” in a crystalline solid makes it an imperfect material and reduces its theoretical strength by orders of magnitude. At the same time, increases in defect densities (from ≈106 cm2 to greater than ≈1011 cm2) by mechanical working of an annealed material significantly increase the strength of the material. Large increases in defect densities can also favor the synthesis of materials with metastable structures and nonequihbrium phases. Shock-compression loading of porous solids can be used to generate large defect densities [1,2] and to synthesize materials with phases and microstructures not obtainable by conventional processing techniques [3–6]. However, the influence of materials issues, derived from the intrinsic physical, chemical, and mechanical properties, and the unique effects of shock-compression loading need to be evaluated to obtain a precise understanding of the complex mechanisms of processes leading to shock synthesis of materials. In this chapter, the relevant materials issues and characteristic features of shock-compression loading of materials will be described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Duvall, Chairman, Shock-Compression Chemistry in Materials Synthesis and Processing, NMAB Report No. 414, National Academy Press, Washington D.C., 1984.

    Google Scholar 

  2. R.A. Graham, Solids Under High Pressure Shock Compression: Mechanics, Physics, and Chemistry, Springer-Verlag, New York, (1993).

    Google Scholar 

  3. A.N. Dremin and O.N. Breusov, Russ. Chem. Rev. 37(5), p. 392 (1968).

    Article  ADS  Google Scholar 

  4. R.A. Graham, B. Morosin, E.L. Venturing and M.J. Carr, Annu. Rev. Mater. Sci. 16, p. 315 (1986).

    Article  ADS  Google Scholar 

  5. T.Aizawa, T. Kato, S. Kamensono, Y. Asakawa, and J. Kihara, in J. Faculty Eng. Univ. of Tokyo, XLIII(1), pp. 57–101 (1995).

    Google Scholar 

  6. N.N. Thadhani, Prog. Mater. Sci. 37(2), pp. 117–226 (1993).

    Article  Google Scholar 

  7. J.P. Schaffer, A. Saxena, S.D. Antolovich, T.H. Sanders, and S.B. Warner, The Science and Design of Engineering Materials, Irwin, Homewood, IL (1995).

    Google Scholar 

  8. M.F. Ashby, Materials Selection in Mechanical Design, Pergamon Press, Elmsford, NY (1992).

    Google Scholar 

  9. E.O. Hall, Proc Roy. Soc. (London) B66, p. 476 (1951);

    Google Scholar 

  10. N.J. Petch, J. Iron Steel Inst. 176, p. 25, (1953);

    Google Scholar 

  11. A.H. Cottrell (p. 20) and N.J. Petch (p. 56) in Fracture, Technology Press MIT and Wiley, New York, (1959).

    Google Scholar 

  12. R.A. Graham and N.N. Thadhani, in Shock Waves in Materials Science (ed. A.B. Sawaoka), Springer-Verlag, Tokyo, p. 35 (1993).

    Google Scholar 

  13. C.A. Brooks, V.R. Howes, and A. R. Perry, Nature 332, pp. 139–141 (1988).

    Article  ADS  Google Scholar 

  14. E.L. Venturini, B. Morosin, and R.A. Graham, J. Appl. Phys. 332, p. 3814 (1985).

    Article  ADS  Google Scholar 

  15. M.H. Rice, R.G. McQueen, and J.M. Walsh, in Solid State Phys. 6 (eds. F. Scitz and D. Turnbull), Academic Press, New York, pp. 1–63 (1958).

    Google Scholar 

  16. G.E. Duvall and G.R. Fowles, in High Pressure Physics and Chemistry (ed. R.S. Bradley), Academic Press, New York, p. 209 (1963).

    Google Scholar 

  17. R.A. Graham, in High Pressure Explosive Processing of Ceramics (eds. R.A. Graham and A.B. Sawaoka), Trans Tech Publications, Andermanndorf, Switzerland, pp. 31–64 (1987).

    Google Scholar 

  18. D.R. Curran, J. Appl. Phys. 34, p. 2677 (1963).

    Article  ADS  Google Scholar 

  19. G.E. Duvall and R.A. Graham, Rev. Mod. Phys. 49, p. 523 (1977).

    Article  ADS  Google Scholar 

  20. L.V. Al’tshuler, Appl Mech. Tech. Phys. 4, pp. 93–103 (1978).

    Google Scholar 

  21. P.S. DeCarli, “Method of Making Diamond,” U.S. Pat. No. 3,238,019, March 1, 1966.

    Google Scholar 

  22. P.S. DeCarli and J.C. Jamieson, Science 133, p. 1821 (1961).

    Article  ADS  Google Scholar 

  23. P.S. DeCarli and D.J. Milton, Science 147, p.144 (1965).

    Article  ADS  Google Scholar 

  24. M.R. Baer, in High-Pressure Science and Technology-1993 (eds. S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross), American Institute of Physics, New York, pp. 1247–1250 (1994).

    Google Scholar 

  25. R.A. Graham, in Proc. of 3rd International Symposium on Dynamic Pressures, (1989).

    Google Scholar 

  26. K.K. Krupnikov, M.I. Brazhnik, and V.P. Krupnikova Sov. Phys. JETP 15, p. 470(1962).

    Google Scholar 

  27. A.A. Bakanava, I.P. Ducloladov, and Y.N. Sutulov, J. App. Mech. Tech. Phys. 2, p. 241 (1973).

    Google Scholar 

  28. R.F. Trunin, G.V. Simakov, and M.A. Podurets, Izv. Earth Phys. 12, p. 789–792 (1974).

    Google Scholar 

  29. W. Tong and G. Ravichandran, App. Phys. Lett. 6, pp. 2783–2785 (1994).

    Article  ADS  Google Scholar 

  30. M.U. Anderson, R.A. Graham, and G.T. Holman, in High-Pressure Science and Technology-1993 (eds. S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross), American Institute of Physics, New York, pp. 1111–1114(1993).

    Google Scholar 

  31. F.R. Norwood and R.A. Graham, in Shock Wave and High Strain Rate Impact Phenomena in Materials (eds. M.A. Meyers, L.E. Murr, and K.P. Staudhammer), Marcel Dekker Inc., New York, pp. 989–996 (1992).

    Google Scholar 

  32. E. Dunbar, N.N. Thadhani, and R.A. Graham, J. Mater. Sci. 28, p. 2903 (1993).

    Article  ADS  Google Scholar 

  33. V.S. Joshi and N.N. Thadhani, in Proc. of Int. Conf. on Metallurgical and Materials Applications of Shock Wave and High-Strain-Rate Phenomena (eds. L.E. Murr, K.P. Staudhammer, and M.A. Meyers), Elsevier, New York, pp. 37–66 (1996).

    Google Scholar 

  34. D.K. Potter and T.J. Ahrens, Appl. Phys. Letts. 51, pp. 317 (1987).

    Article  ADS  Google Scholar 

  35. D.K. Potter and T.J. Ahrens, J. Appl Phys. 63, p. 910 (1988).

    Article  ADS  Google Scholar 

  36. H. Tan and T.J. Ahrens, J. Appl. Phys. 67, 217–224 (1990).

    Article  ADS  Google Scholar 

  37. D.K. Potter and T.J. Ahrens, “Polycrystalline Diamond and Method for Forming Same,” U.S. Patent No. 5,087,435, February, 11, 1992.

    Google Scholar 

  38. K. Kondo and S. Sawai, J. Amer. Ceram. Soc. 73, p. 1983 (1990).

    Article  Google Scholar 

  39. T. Akashi and A.B. Sawaoka, U.S. Pat. 4,655,830, Apr. 7, 1987.

    Google Scholar 

  40. T. Akashi and A.B. Sawaoka, J. Mater. Sci. 21, p. 2221 (1987).

    Google Scholar 

  41. M. Yoshida, K. Tanaka, and S. Fujiwara, in Shock Waves in Condensed Matter-1987 (eds. S.C. Schmidt and N.C. Holmes), North-Holland, Amsterdam, p. 399 (1988).

    Google Scholar 

  42. K. Hokamoto, S.S. Shang, L.H. Yu and M.A. Meyers, in Shock-Wave and High-Strain-Rate Phenomena in Materials, (eds. L.E. Murr, M.A. Meyers, and K.P. Staudhammer), Marcel Dekker, New York, p. 453 (1990).

    Google Scholar 

  43. V.S. Joshi, H.A. Grebe, Z. Iqbal, and N.N. Thadhani, in Processing and Fabrication of Advanced Materials for High Temperature Applications III (eds. V.A. Ravi, T.S. Srivatsan, and J.J. Moore), TMS, Warrendale, PA, p. 83 (1994).

    Google Scholar 

  44. M. Yoshida and N.N. Thadhani, in Shock Waves in Condensed Matter-1991 (eds. S.C. Schmidt, R.D. Dick, J.W. Forbes, and D.G. Tasker), Elsevier, Amsterdam, (1991).

    Google Scholar 

  45. M.A. Meyers, L.H. Yu, and K. Veccchio, Acta Metall. Mater. 42, pp. 70 and 715 (1994).

    Google Scholar 

  46. N.N. Thadhani, J. Appl. Phys. 76, p. 2129 (1994).

    Article  ADS  Google Scholar 

  47. R. Young, Southwest Research Institute, unpublished results (1996).

    Google Scholar 

  48. Y. Horie and A.B. Sawaoka, Shock Compression Chemistry of Materials, Terra, Tokyo (1993).

    Google Scholar 

  49. S.S. Batsanov, G.S. Doronin, S.V. Klochkov and A.I. Teut, Combust., Explosion Shock Waves 22, p. 134, (1986).

    Google Scholar 

  50. K.R. Iyer, L.S. Bennett, F.Y. Sorrell, and Y. Horie, in High-Pressure Science and Technology-1993 (eds. S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross), American Institute of Physics, New York, pp. 1337–1340 (1994).

    Google Scholar 

  51. E. Dunbar, R. A. Graham, G.T. Holman, M.U. Anderson, and N.N. Thadhani, in High-Pressure Science and Technology-1993, (eds. S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross) American Institute of Physics, New York, pp. 1334–1337 (1994).

    Google Scholar 

  52. M.D. Hwang, Modelling of Shock-Induced Chemical Reactions in Powder Mixtures using the VIR Model, Ph.D. thesis, North Carolina State University, Raleigh, NC (1992).

    Google Scholar 

  53. Y. Horie and A.B. Sawaoka, Shock Compression Chemistry of Materials, KTK Scientific Publishers, Tokyo, p. 235 (1993).

    Google Scholar 

  54. W.F. Hammetter, R.A. Graham, B. Morosin, and Y. Horie, in Shock Waves in Condensed Matter-1987 (eds., S.C. Schmidt and N.C. Holmes), Elsevier Science Publishers B.V., Amsterdam, p. 431 (1988).

    Google Scholar 

  55. F. Bordeaux and A.R. Yavari, J. Mater. Res. 5, p. 1956–1961 (1990).

    Article  Google Scholar 

  56. N.N. Thadhani, S. Work, R.A Graham, and W.F. Hammetter, J. Mater. Res., 7, p. 1063 (1992).

    Article  ADS  Google Scholar 

  57. I.Song and N.N. Thadhani, Metall. Trans. 23A, p. 41 (1992).

    Google Scholar 

  58. N.N. Thadhani, E. Dunbar, and R.A. Graham, in High Pressure Science and Technology-1993 (eds. S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross), American Institute of Physics, New York, pp. 1307–1310 (1994).

    Google Scholar 

  59. R.B. Frey, in Eighth Symposium (International) on Detonation (ed. James M. Short), (U.S.) Naval Surface Weapons Center, White Oak, MD, p. 385 (1985).

    Google Scholar 

  60. E. Dunbar, Effect of Volumetric Distribution of Starting Powder Mixtures on Shock Induced Chemical Synthesis, M.S thesis, New Mexico Institute of Mining and Technology, Socorro, NM (1992).

    Google Scholar 

  61. L.H. Yu and M.A. Meyers, J. Mater. Sci. 26, p. 601 (1991).

    Article  ADS  Google Scholar 

  62. R.B. Schwarz, P. Kasiraj, T. Vreeland, Jr., and T.J. Ahrens, Acta Metall 32, p. 1249 (1984).

    Google Scholar 

  63. N.N. Thadhani, A.H. Mutz, P. Kasiraj, and T. Vreeland, Jr., in Metallurgical Applications of Shock Wave and High-Strain-Rate Phenomena (eds. L.E. Murr, K.P. Staudhammer, and M.A. Meyers), Marcel Dekker, New York, p. 247 (1986).

    Google Scholar 

  64. V.F. Nesterenko, M.A. Meyers, H.C. Chen, and J.C. LaSalvia, Metall Trans. 26A,p.2511 (1995).

    Google Scholar 

  65. T. Aizawa, in Proc. of Third SAMPE Symp., p. 1013 (1993).

    Google Scholar 

  66. T. Aizawa, S. Kamenosono, T. Niwatsukino, K. Tanaka, and J. Kihara, in Proc. of Int. Conf. on Metallurgical and Materials Applications of Shock Wave and High-Strain-Rate Phenomena (eds. L.E. Murr, K.P. Staudhammer, and M.A. Meyers), Elsevier, New York, p. 653 (1996).

    Google Scholar 

  67. T. Aizawa, Y. Asakawa and J. Kihara, Ann. Chim. Fr. 20, pp. 181–196 (1995).

    Google Scholar 

  68. T. Aizawa, J. Kihara, and D. Benson, Mater. Trans. JIM 36(2), p. 138 (1995).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Thadhani, N.N., Aizawa, T. (1997). Materials Issues in Shock-Compression-Induced Chemical Reactions in Porous Solids. In: Davison, L., Horie, Y., Shahinpoor, M. (eds) High-Pressure Shock Compression of Solids IV. High-Pressure Shock Compression of Condensed Matter. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2292-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2292-7_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7489-6

  • Online ISBN: 978-1-4612-2292-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics