Advertisement

Materials Issues in Shock-Compression-Induced Chemical Reactions in Porous Solids

  • N. N. Thadhani
  • T. Aizawa
Part of the High-Pressure Shock Compression of Condensed Matter book series (SHOCKWAVE)

Abstract

The presence of “structural defects” in a crystalline solid makes it an imperfect material and reduces its theoretical strength by orders of magnitude. At the same time, increases in defect densities (from ≈106 cm2 to greater than ≈1011 cm2) by mechanical working of an annealed material significantly increase the strength of the material. Large increases in defect densities can also favor the synthesis of materials with metastable structures and nonequihbrium phases. Shock-compression loading of porous solids can be used to generate large defect densities [1,2] and to synthesize materials with phases and microstructures not obtainable by conventional processing techniques [3–6]. However, the influence of materials issues, derived from the intrinsic physical, chemical, and mechanical properties, and the unique effects of shock-compression loading need to be evaluated to obtain a precise understanding of the complex mechanisms of processes leading to shock synthesis of materials. In this chapter, the relevant materials issues and characteristic features of shock-compression loading of materials will be described.

Keywords

Shock Wave Powder Mixture Shock Compression Reaction Behavior Porous Solid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. Duvall, Chairman, Shock-Compression Chemistry in Materials Synthesis and Processing, NMAB Report No. 414, National Academy Press, Washington D.C., 1984.Google Scholar
  2. [2]
    R.A. Graham, Solids Under High Pressure Shock Compression: Mechanics, Physics, and Chemistry, Springer-Verlag, New York, (1993).Google Scholar
  3. [3]
    A.N. Dremin and O.N. Breusov, Russ. Chem. Rev. 37(5), p. 392 (1968).ADSCrossRefGoogle Scholar
  4. [4]
    R.A. Graham, B. Morosin, E.L. Venturing and M.J. Carr, Annu. Rev. Mater. Sci. 16, p. 315 (1986).ADSCrossRefGoogle Scholar
  5. [5]
    T.Aizawa, T. Kato, S. Kamensono, Y. Asakawa, and J. Kihara, in J. Faculty Eng. Univ. of Tokyo, XLIII(1), pp. 57–101 (1995).Google Scholar
  6. [6]
    N.N. Thadhani, Prog. Mater. Sci. 37(2), pp. 117–226 (1993).CrossRefGoogle Scholar
  7. [7]
    J.P. Schaffer, A. Saxena, S.D. Antolovich, T.H. Sanders, and S.B. Warner, The Science and Design of Engineering Materials, Irwin, Homewood, IL (1995).Google Scholar
  8. [8]
    M.F. Ashby, Materials Selection in Mechanical Design, Pergamon Press, Elmsford, NY (1992).Google Scholar
  9. [9a]
    E.O. Hall, Proc Roy. Soc. (London) B66, p. 476 (1951);Google Scholar
  10. [9b]
    N.J. Petch, J. Iron Steel Inst. 176, p. 25, (1953);Google Scholar
  11. [9c]
    A.H. Cottrell (p. 20) and N.J. Petch (p. 56) in Fracture, Technology Press MIT and Wiley, New York, (1959).Google Scholar
  12. [10]
    R.A. Graham and N.N. Thadhani, in Shock Waves in Materials Science (ed. A.B. Sawaoka), Springer-Verlag, Tokyo, p. 35 (1993).Google Scholar
  13. [11]
    C.A. Brooks, V.R. Howes, and A. R. Perry, Nature 332, pp. 139–141 (1988).ADSCrossRefGoogle Scholar
  14. [12]
    E.L. Venturini, B. Morosin, and R.A. Graham, J. Appl. Phys. 332, p. 3814 (1985).ADSCrossRefGoogle Scholar
  15. [13]
    M.H. Rice, R.G. McQueen, and J.M. Walsh, in Solid State Phys. 6 (eds. F. Scitz and D. Turnbull), Academic Press, New York, pp. 1–63 (1958).Google Scholar
  16. [14]
    G.E. Duvall and G.R. Fowles, in High Pressure Physics and Chemistry (ed. R.S. Bradley), Academic Press, New York, p. 209 (1963).Google Scholar
  17. [15]
    R.A. Graham, in High Pressure Explosive Processing of Ceramics (eds. R.A. Graham and A.B. Sawaoka), Trans Tech Publications, Andermanndorf, Switzerland, pp. 31–64 (1987).Google Scholar
  18. [16]
    D.R. Curran, J. Appl. Phys. 34, p. 2677 (1963).ADSCrossRefGoogle Scholar
  19. [17]
    G.E. Duvall and R.A. Graham, Rev. Mod. Phys. 49, p. 523 (1977).ADSCrossRefGoogle Scholar
  20. [18]
    L.V. Al’tshuler, Appl Mech. Tech. Phys. 4, pp. 93–103 (1978).Google Scholar
  21. [19]
    P.S. DeCarli, “Method of Making Diamond,” U.S. Pat. No. 3,238,019, March 1, 1966.Google Scholar
  22. [20]
    P.S. DeCarli and J.C. Jamieson, Science 133, p. 1821 (1961).ADSCrossRefGoogle Scholar
  23. [21]
    P.S. DeCarli and D.J. Milton, Science 147, p.144 (1965).ADSCrossRefGoogle Scholar
  24. [22]
    M.R. Baer, in High-Pressure Science and Technology-1993 (eds. S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross), American Institute of Physics, New York, pp. 1247–1250 (1994).Google Scholar
  25. [23]
    R.A. Graham, in Proc. of 3rd International Symposium on Dynamic Pressures, (1989).Google Scholar
  26. [24]
    K.K. Krupnikov, M.I. Brazhnik, and V.P. Krupnikova Sov. Phys. JETP 15, p. 470(1962).Google Scholar
  27. [25]
    A.A. Bakanava, I.P. Ducloladov, and Y.N. Sutulov, J. App. Mech. Tech. Phys. 2, p. 241 (1973).Google Scholar
  28. [26]
    R.F. Trunin, G.V. Simakov, and M.A. Podurets, Izv. Earth Phys. 12, p. 789–792 (1974).Google Scholar
  29. [27]
    W. Tong and G. Ravichandran, App. Phys. Lett. 6, pp. 2783–2785 (1994).ADSCrossRefGoogle Scholar
  30. [28]
    M.U. Anderson, R.A. Graham, and G.T. Holman, in High-Pressure Science and Technology-1993 (eds. S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross), American Institute of Physics, New York, pp. 1111–1114(1993).Google Scholar
  31. [29]
    F.R. Norwood and R.A. Graham, in Shock Wave and High Strain Rate Impact Phenomena in Materials (eds. M.A. Meyers, L.E. Murr, and K.P. Staudhammer), Marcel Dekker Inc., New York, pp. 989–996 (1992).Google Scholar
  32. [30]
    E. Dunbar, N.N. Thadhani, and R.A. Graham, J. Mater. Sci. 28, p. 2903 (1993).ADSCrossRefGoogle Scholar
  33. [31]
    V.S. Joshi and N.N. Thadhani, in Proc. of Int. Conf. on Metallurgical and Materials Applications of Shock Wave and High-Strain-Rate Phenomena (eds. L.E. Murr, K.P. Staudhammer, and M.A. Meyers), Elsevier, New York, pp. 37–66 (1996).Google Scholar
  34. [32]
    D.K. Potter and T.J. Ahrens, Appl. Phys. Letts. 51, pp. 317 (1987).ADSCrossRefGoogle Scholar
  35. [33]
    D.K. Potter and T.J. Ahrens, J. Appl Phys. 63, p. 910 (1988).ADSCrossRefGoogle Scholar
  36. [34]
    H. Tan and T.J. Ahrens, J. Appl. Phys. 67, 217–224 (1990).ADSCrossRefGoogle Scholar
  37. [35]
    D.K. Potter and T.J. Ahrens, “Polycrystalline Diamond and Method for Forming Same,” U.S. Patent No. 5,087,435, February, 11, 1992.Google Scholar
  38. [36]
    K. Kondo and S. Sawai, J. Amer. Ceram. Soc. 73, p. 1983 (1990).CrossRefGoogle Scholar
  39. [37]
    T. Akashi and A.B. Sawaoka, U.S. Pat. 4,655,830, Apr. 7, 1987.Google Scholar
  40. [38]
    T. Akashi and A.B. Sawaoka, J. Mater. Sci. 21, p. 2221 (1987).Google Scholar
  41. [39]
    M. Yoshida, K. Tanaka, and S. Fujiwara, in Shock Waves in Condensed Matter-1987 (eds. S.C. Schmidt and N.C. Holmes), North-Holland, Amsterdam, p. 399 (1988).Google Scholar
  42. [40]
    K. Hokamoto, S.S. Shang, L.H. Yu and M.A. Meyers, in Shock-Wave and High-Strain-Rate Phenomena in Materials, (eds. L.E. Murr, M.A. Meyers, and K.P. Staudhammer), Marcel Dekker, New York, p. 453 (1990).Google Scholar
  43. [41]
    V.S. Joshi, H.A. Grebe, Z. Iqbal, and N.N. Thadhani, in Processing and Fabrication of Advanced Materials for High Temperature Applications III (eds. V.A. Ravi, T.S. Srivatsan, and J.J. Moore), TMS, Warrendale, PA, p. 83 (1994).Google Scholar
  44. [42]
    M. Yoshida and N.N. Thadhani, in Shock Waves in Condensed Matter-1991 (eds. S.C. Schmidt, R.D. Dick, J.W. Forbes, and D.G. Tasker), Elsevier, Amsterdam, (1991).Google Scholar
  45. [43]
    M.A. Meyers, L.H. Yu, and K. Veccchio, Acta Metall. Mater. 42, pp. 70 and 715 (1994).Google Scholar
  46. [44]
    N.N. Thadhani, J. Appl. Phys. 76, p. 2129 (1994).ADSCrossRefGoogle Scholar
  47. [45]
    R. Young, Southwest Research Institute, unpublished results (1996).Google Scholar
  48. [46]
    Y. Horie and A.B. Sawaoka, Shock Compression Chemistry of Materials, Terra, Tokyo (1993).Google Scholar
  49. [47]
    S.S. Batsanov, G.S. Doronin, S.V. Klochkov and A.I. Teut, Combust., Explosion Shock Waves 22, p. 134, (1986).Google Scholar
  50. [48]
    K.R. Iyer, L.S. Bennett, F.Y. Sorrell, and Y. Horie, in High-Pressure Science and Technology-1993 (eds. S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross), American Institute of Physics, New York, pp. 1337–1340 (1994).Google Scholar
  51. [49]
    E. Dunbar, R. A. Graham, G.T. Holman, M.U. Anderson, and N.N. Thadhani, in High-Pressure Science and Technology-1993, (eds. S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross) American Institute of Physics, New York, pp. 1334–1337 (1994).Google Scholar
  52. [50]
    M.D. Hwang, Modelling of Shock-Induced Chemical Reactions in Powder Mixtures using the VIR Model, Ph.D. thesis, North Carolina State University, Raleigh, NC (1992).Google Scholar
  53. [51]
    Y. Horie and A.B. Sawaoka, Shock Compression Chemistry of Materials, KTK Scientific Publishers, Tokyo, p. 235 (1993).Google Scholar
  54. [52]
    W.F. Hammetter, R.A. Graham, B. Morosin, and Y. Horie, in Shock Waves in Condensed Matter-1987 (eds., S.C. Schmidt and N.C. Holmes), Elsevier Science Publishers B.V., Amsterdam, p. 431 (1988).Google Scholar
  55. [53]
    F. Bordeaux and A.R. Yavari, J. Mater. Res. 5, p. 1956–1961 (1990).CrossRefGoogle Scholar
  56. [54]
    N.N. Thadhani, S. Work, R.A Graham, and W.F. Hammetter, J. Mater. Res., 7, p. 1063 (1992).ADSCrossRefGoogle Scholar
  57. [55]
    I.Song and N.N. Thadhani, Metall. Trans. 23A, p. 41 (1992).Google Scholar
  58. [56]
    N.N. Thadhani, E. Dunbar, and R.A. Graham, in High Pressure Science and Technology-1993 (eds. S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross), American Institute of Physics, New York, pp. 1307–1310 (1994).Google Scholar
  59. [57]
    R.B. Frey, in Eighth Symposium (International) on Detonation (ed. James M. Short), (U.S.) Naval Surface Weapons Center, White Oak, MD, p. 385 (1985).Google Scholar
  60. [58]
    E. Dunbar, Effect of Volumetric Distribution of Starting Powder Mixtures on Shock Induced Chemical Synthesis, M.S thesis, New Mexico Institute of Mining and Technology, Socorro, NM (1992).Google Scholar
  61. [59]
    L.H. Yu and M.A. Meyers, J. Mater. Sci. 26, p. 601 (1991).ADSCrossRefGoogle Scholar
  62. [60]
    R.B. Schwarz, P. Kasiraj, T. Vreeland, Jr., and T.J. Ahrens, Acta Metall 32, p. 1249 (1984).Google Scholar
  63. [61]
    N.N. Thadhani, A.H. Mutz, P. Kasiraj, and T. Vreeland, Jr., in Metallurgical Applications of Shock Wave and High-Strain-Rate Phenomena (eds. L.E. Murr, K.P. Staudhammer, and M.A. Meyers), Marcel Dekker, New York, p. 247 (1986).Google Scholar
  64. [62]
    V.F. Nesterenko, M.A. Meyers, H.C. Chen, and J.C. LaSalvia, Metall Trans. 26A,p.2511 (1995).Google Scholar
  65. [63]
    T. Aizawa, in Proc. of Third SAMPE Symp., p. 1013 (1993).Google Scholar
  66. [64]
    T. Aizawa, S. Kamenosono, T. Niwatsukino, K. Tanaka, and J. Kihara, in Proc. of Int. Conf. on Metallurgical and Materials Applications of Shock Wave and High-Strain-Rate Phenomena (eds. L.E. Murr, K.P. Staudhammer, and M.A. Meyers), Elsevier, New York, p. 653 (1996).Google Scholar
  67. [65]
    T. Aizawa, Y. Asakawa and J. Kihara, Ann. Chim. Fr. 20, pp. 181–196 (1995).Google Scholar
  68. [66]
    T. Aizawa, J. Kihara, and D. Benson, Mater. Trans. JIM 36(2), p. 138 (1995).Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1997

Authors and Affiliations

  • N. N. Thadhani
  • T. Aizawa

There are no affiliations available

Personalised recommendations