Advertisement

Comments on Shock-Compression Science in Highly Porous Solids

  • R. A. Graham
Part of the High-Pressure Shock Compression of Condensed Matter book series (SHOCKWAVE)

Abstract

The recently revived interest in the science and technology of porous solids subjected to high-pressure, shock-compression loading is well highlighted in the present volume. The recent work follows earlier developments, beginning some 40 years ago, which were principally concerned with either determination of high-pressure Hugoniot curves defining states of thermodynamic equilibrium achievable by strong shock compression of porous solids [1,2] or purely mechanical analysis of material consolidation by, or attenuation of, low-amplitude pressure pulses propagating in these materials [3,4]. Lines of research based on these pioneering efforts continue to the present. Nevertheless, newer problems posed particularly by observations of chemical synthesis in porous-powder mixtures, the processing of ceramics, special metals, and diamonds into fully dense well-bonded states, and deflagration-to-detonation transitions (DDT) in high explosives are not realistically described by the equilibrium, continuum approaches developed in the early years. These modern problems require description at the particle level, including physical, mechanical and chemical properties.

Keywords

Shock Wave Residual Strain Crush Strength Shock Compression Solid State Chemistry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L.V. Al’tshuler, K K. Krupnikov, B.N. Ledenev, V.I. Zhuchikhin, and M.I. Brazhnik, Sov. Phys.-JETP 34, p. 606 (1958).Google Scholar
  2. [2]
    R.F. McQueen and S.P. Marsh, in Behavior of Dense Media Under High Dynamic Pressures, Symposium H. D. P., Gordon and Breach, New York, pp. 207–216 (1968).Google Scholar
  3. [3]
    W. Herrmann, J. Appl. Phys. 40, pp. 2490–2499 (1969).ADSCrossRefGoogle Scholar
  4. [4]
    W.J. Murri, D.R. Curran, C.F. Peterson, and R.C. Crewdson, in Advances in High Pressure Research, Vol. 4 (ed. R. H. Wentorf, Jr.), Academic Press, New York, pp. 1–163 (1974).Google Scholar
  5. [5]
    M.M. Carroll and A.C. Holt, J. Appl Phys. 43, pp. 1626–1635 (1972).ADSCrossRefGoogle Scholar
  6. [6]
    G.J. Ravichandran, J. Appl. Phys. 74, pp. 2425–2435 (1993). (See also the work of F. Collombet et al., in Metallurgical and Materials Applications of Shock-Wave and High-Strain-Rate Phenomena (ed. L.E. Murr, K.P. Staudhammer and M.A. Meyers), Elsevier, pp. 51–58 (1995).ADSCrossRefGoogle Scholar
  7. [7]
    P.Yu. Butyagin, Russ. Chem. Rev. 40, pp. 901–915 (1971).ADSCrossRefGoogle Scholar
  8. [8]
    V.W. Gustov, in High Pressure Chemistry and Physics of Polymers (ed. A.L. Kovarskii), CRC Press, Boca Raton, FL, pp. 303–340 (1994).Google Scholar
  9. [9]
    Y. Horie and A.B. Sawaoka, Shock Compression Chemistry of Materials, KTK Scientific Publishers, Tokyo (1993).Google Scholar
  10. [10]
    A.B. Sawaoka, editor, Shock Waves in Materials Science, Springer-Verlag, Tokyo (1993).Google Scholar
  11. [11]
    R.A. Graham, Solids Under High Pressure Shock Compression: Me chanics, Physics, and Chemistry, Springer-Verlag, New York (1993).Google Scholar
  12. [12]
    R.A. Graham and A.B. Sawaoka, editors, High Pressure Explosive Processing of Ceramics, Trans Tech Publications, Switzerland (1987).Google Scholar
  13. [13a]
    See, e.g., R.F. Trunin, G.V. Simakov, Yu.N. Sutulov, A.B. Medvedev, B.D. Rogozkin, and Yu.E. Fedorov, Sov. Phys.-JETP 69, pp. 580–588 (1989)Google Scholar
  14. [13b]
    R.F. Trunin, G.V. Simakov, Yu.N. Sutulov, A.B. Medvedev, B.D. Rogozkin, and Yu.E. Fedorov, Sov. Phys.-JETP 69, p. 580 (1989).Google Scholar
  15. [14]
    B.A. Khasainov, A.A. Borisov, B.S. Ermolaev, and A.I. Korotkov, in Seventh International Detonation Symposium, pp. 435–447 (1981).Google Scholar
  16. [15]
    VF. Nesterenko, Combustion, Explosion and Shock Waves 21, p. 730 (1985).CrossRefGoogle Scholar
  17. [16]
    M.A. Meyers, S.S. Shang, and K. Hokamoto, in [10], pp. 145–176.Google Scholar
  18. [17]
    C.E. Morris, Shock Waves 1, pp. 213–222 (1991).ADSCrossRefGoogle Scholar
  19. [18]
    Y. Horie, unpublished manuscript (1993).Google Scholar
  20. [19]
    N.W. Page, Shock Waves 4, pp. 73–80 (1994).ADSCrossRefGoogle Scholar
  21. [20]
    B.R. Kruger and T. Vreeland, Jr., J. Appl. Phys. 69, p. 710 (1991).ADSCrossRefGoogle Scholar
  22. [21]
    Y. Horie, in High Pressure Science and Technology-1993 (eds. S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross), American Institute of Physics, New York, pp. 1235–1238 (1994).Google Scholar
  23. [22]
    W.H. Gourdin, J. Appl. Phys. 55, pp. 172–181 (1984).ADSCrossRefGoogle Scholar
  24. [23]
    R.B. Schwarz, P. Kasiraj, T. Vreeland, Jr., and T.J. Ahrens, Acta Metall. 32, pp. 1243–1252 (1984).CrossRefGoogle Scholar
  25. [24]
    V.F. Nesterenko, Combust. Explos. Shock Waves 11, p. 376 (1976).CrossRefGoogle Scholar
  26. [25]
    K. Kondo, in [12], pp. 227–282.Google Scholar
  27. [26]
    J.N. Johnson and S. J. Green, in The Effects of Voids on Materials Deformation, AMD-16, American Society of Mechanical Engineers, New York (1976).Google Scholar
  28. [27]
    J. Swegle, J. Appl. Phys. 51, p. 2574 (1980).ADSCrossRefGoogle Scholar
  29. [28]
    M. Hwang, Y. Horie, and S. You, in Shock Compression of Condensed Matter-1991 (eds. S.C. Schmidt, R.D. Dick, J.W. Forbes, and D.G. Tasker), North-Holland, Amsterdam, pp. 597–600 (1992).Google Scholar
  30. [29]
    S. You, Y. Horie, and M. Hwang, in Shock Compression of Condensed Matter-1991 (eds. S.C. Schmidt, R.D. Dick, J.W. Forbes, and D.G. Tasker), North-Holland, Amsterdam, pp. 601–604 (1992).Google Scholar
  31. [30]
    M.R. Baer and J.W. Nunziato, Int. J. Multiphase Flow 12, p. 861 (1986).zbMATHCrossRefGoogle Scholar
  32. [31]
    M.R. Baer,in High-Pressure Science and Technology-1993 (eds. S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross), American Institute of Physics, New York, pp. 1247–1250 (1994). See also, M.R. Baer, this volume, Chapter 3.Google Scholar
  33. [32]
    J.W. Taylor, in Shock Waves in Condensed Matter-1983 (eds. J.R. Asay, R.A. Graham, and G.K. Straub), North-Holland, Amsterdam, pp. 3–15 (1984).Google Scholar
  34. [33]
    Y. Horie, in Metallurgical and Materials Applications of Shock-Wave and High-Strain-Rate Phenomena (eds. L.E. Murr, K.P. Staudhammer, and M.A. Meyers), Elsevier, pp. 603–614 (1995).Google Scholar
  35. [34]
    A.R. West, Solid State Chemistry and its Applications, Wiley, New York (1984).Google Scholar
  36. [35]
    H. Schmalzried, Solid State Reactions, Verlag Chemie, Basel (1981).Google Scholar
  37. [36]
    R.A. Graham, in 3rd Symposium High Dynamic Pressures (ed. R. Chéret), Commissariat a l’Énergie Atomique, Paris, pp. 175–180 (1989).Google Scholar
  38. [37]
    B. Morosin and R.A. Graham, in Shock Waves in Condensed Matter-1981 (eds. W.J. Nellis, L. Seaman, and R.A. Graham), American Institute of Physics, New York, pp. 4–13 (1982).Google Scholar
  39. [38]
    R.A. Graham and N.N. Thadhani, in [10].Google Scholar
  40. [39]
    See references in [9] and [40].Google Scholar
  41. [40]
    N.N. Thadhani, in Prog. Mater. Sci. 37, pp. 117–226 (1993).CrossRefGoogle Scholar
  42. [41]
    S. Thunborg, Jr., G.E. Ingram, and R.A. Graham, Rev. Sci. Instrum. 35, pp. 11–14(1964).ADSCrossRefGoogle Scholar
  43. [42]
    M.U. Anderson and R.A. Graham, in Shock Compression of Condensed Matter-1995, (eds. S.C. Schmidt and W.C. Tao), American Institute of Physics, New York, pp. 1101–1104 (1996).Google Scholar
  44. [43]
    R.A. Graham, B. Morosin, E.L. Venturing and M.J. Carr, in Annual Reviews in Materials Science, Vol. 16 (eds. R.A. Huggins, J.A. Giordmaine, and J.B. Wachtman, Jr.), Annual Reviews, Palo Alto, CA, pp. 315–341 (1986).Google Scholar
  45. [44]
    B. Morosin and R.A. Graham, Mater. Sci. Eng. 66, pp. 73–87 (1984).CrossRefGoogle Scholar
  46. [45]
    B. Morosin, E.L. Venturini, R.A. Graham, and D.S. Ginley, Synthetic Metals 33, pp. 1185–224 (1989).CrossRefGoogle Scholar
  47. [46]
    R.A. Graham, editor The Morosin Papers on X-ray Diffraction Line Broadening of Shock-Modified Solids, unpublished (1995).Google Scholar
  48. [47]
    R.A. Graham, editor The Sandia Papers on Synthesis of Zinc Ferrite Under High Pressure Shock Compression, unpublished, (1995).Google Scholar
  49. [48]
    B. Morosin and R.A. Graham, Mater. Lett. 3, pp. 119–123. (1985).CrossRefGoogle Scholar
  50. [49]
    Y. Zhang, J.M. Stewart, B. Morosin, R.A. Graham, and C.R. Hubbard, Appl. Phys. Commun. 9, pp. 183–202 (1989).Google Scholar
  51. [50]
    D.L. Williamson, E.L. Venturini, R.A. Graham, and B. Morosin, Phys. Rev. B34, pp. 1899–1907 (1986).ADSGoogle Scholar
  52. [51]
    P. Newcomer, B. Morosin, and R.A. Graham, in Advances in X-ray Analysis, Vol. 36 (eds. J. V. Gillich et al.), Plenum, New York, pp. 595–601 (1993).Google Scholar
  53. [52]
    E.L. Venturini, B. Morosin, and R.A. Graham, in Shock Waves in Condensed Matter-1981 (eds. W.J. Nellis, L. Seaman, and R.A. Graham), American Institute of Physics, New York, pp. 77–81 (1982).Google Scholar
  54. [53]
    See [11], p. 166.Google Scholar
  55. [54]
    R.R. Hasiguti, in Annual Review of Mater. Science Vol. 2 (eds. R.A. Huggins, R.H. Bube, and R.W. Roberts), Annual Reviews, Palo Alto, CA, pp. 69–92 (1972).Google Scholar
  56. [55]
    E.L. Venturini and R.A. Graham, in Defect Properties and Processing of High-Technology Nonmetallic Materials (eds. J.H. Crawford, Jr., Y. Chen, and W.A. Sibley), Materials Research Society, Boston, pp. 383–389 (1984).Google Scholar
  57. [56]
    R.A. Graham, B. Morosin, Y. Horie, E.L. Venturini, M. Boslough, M.M. Carr, and D.L. Williamson, in Shock Waves in Condensed Matter (ed. Y.M. Gupta), Plenum, New York, pp. 693–711 (1986).Google Scholar
  58. [57]
    N.N. Thadhani and T. Aizawa, this volume, Chapter 10.Google Scholar
  59. [58]
    N.N. Thadhani, R.A. Graham, T. Royal, E. Dunbar, M.U. Anderson, and G.T. Holman, J. Appl. Phys., in press.Google Scholar
  60. [59]
    F. Bauer, in Shock Waves in Condensed Matter-1981 (eds. W.J. Nellis, L. Seaman, and R.A. Graham), American Institute of Physics, New York, pp. 251–266 (1982).Google Scholar
  61. [60]
    R.A. Graham, M.U. Anderson, F. Bauer, and R.E. Setchell, in Shock Compression of Condensed Matter-1991 (eds. S.C. Schmidt, R.D. Dick, J.W. Forbes, and D.G. Tasker), North-Holland, Amsterdam, pp. 883–886 (1992).Google Scholar
  62. [61]
    M. Baer, private communication (1995).Google Scholar
  63. [62]
    M.U. Anderson, R.A. Graham, and G.T. Holman, in High-Pressure Science and Technology-1993 (eds. S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross), American Institute of Physics, New York, pp. 1111–1114(1994).Google Scholar
  64. [63]
    W.H. Holt, W. Mock, Jr., M.U. Anderson, G.T. Holman, and R.A. Graham, in Shock Waves in Condensed Matter-1995, (eds. S.C. Schmidt and W.C. Tao), American Institute of Physics, New York (1996).Google Scholar
  65. [64]
    S.A. Sheffield, R.L. Gustavsen, R.R. Alcon, R.A. Graham, and M.U. Anderson, in High-Pressure Science and Technology-1993 (eds. S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross), American Institute of Physics, New York, pp. 1377–1380 (1994).Google Scholar
  66. [65]
    R.A. Graham, High-Pressure Science and Technology-1993 (eds. S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross), American Institute of Physics, New York, pp. 3–12 (1994).Google Scholar
  67. [66]
    L. Davison and R.A. Graham, Phys. Rep. 55, pp. 256–379 (1979).ADSCrossRefGoogle Scholar
  68. [67]
    J.J. Gilman, Science 274, p. 65 (1990).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1997

Authors and Affiliations

  • R. A. Graham

There are no affiliations available

Personalised recommendations