Skip to main content

A Bayesian Approach to the Modeling of Spatial-Temporal Precipitation Data

  • Conference paper
Case Studies in Bayesian Statistics

Part of the book series: Lecture Notes in Statistics ((LNS,volume 121))

Abstract

Most precipitation data comes in the form of daily rainfall totals collected across a network of rain gauges. Research over the past several years on the statistical modeling of rainfall data has led to the development of models in which rain events are formed according to some stochastic process, and deposit rain over an area before they die. Fitting such models to daily data is difficult, however, because of the absence of direct observation of the rain events. In this paper, we argue that such a fitting procedure is possible within a Bayesian framework. The methodology relies heavily on Markov chain simulation algorithms to produce a reconstruction of the unseen process of rain events. As applications, we discuss the potential of such methodology in demonstrating changes in precipitation patterns as a result of actual or hypothesized changes in the global climate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Best, D.J. & Fisher, N.I. (1979), Efficient simulation of the von Mises distribution. Applied Statistics 28, 152–157.

    Article  MATH  Google Scholar 

  • Bonnell, M. and Sumner, G. (1992), Autumn and winter daily precipitation events in Wales 1982–1983 to 1986–1987. International Journal of Climatology 12, 77–102.

    Article  Google Scholar 

  • Cox, D.R. and Isham, V. (1988), A simple spatial-temporal model of rainfall. Proc. Roy. Soc. Lond. A 415, 317–328.

    Article  MathSciNet  Google Scholar 

  • Cox, D.R. & Isham, V. (1994), Stochastic models of precipitation. In Statistics for the Environment, Volume 2 ( V. Barnett & F. Turkman, editors), pp. 3–18. Chichester: John Wiley.

    Google Scholar 

  • Cressie, N.A.C. (1991), Statistics for Spatial Data. Wiley, New York.

    Google Scholar 

  • Devroye, L. (1986), Non-Uniform Random Variate Generation. Springer-Verlag, New York.

    Google Scholar 

  • Green, P.J. (1995), Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82, 711–732.

    Article  MathSciNet  MATH  Google Scholar 

  • Hastings, W.K. (1970), Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97–109.

    Article  MATH  Google Scholar 

  • Henderson, K.G. and Robinson, P.J. (1994), Relationships between the Pacific/North American teleconnection patterns and precipitation events in the southeastern United States. International J. Climatology 14, 307–323.

    Article  Google Scholar 

  • Henderson-Sellers, A. and McGuffie, K. (1987), A Climate Modelling Primer. Wiley, New York.

    Google Scholar 

  • Le Cam, L. (1961), A stochastic description of precipitation. Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, 3, ed. J. Neyman, Berkeley, CA, pp. 165–186

    Google Scholar 

  • Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. and Teller, E. (1953), Equation of state calculations by fast computing machines. Journal of Chemical Physics 21, 1087–1092.

    Article  Google Scholar 

  • Müller, P. (1991), A generic approach to posterior integration and Gibbs sampling. Preprint, Duke University.

    Google Scholar 

  • Phelan, M.J. (1992), Aging functions and their nonparametric estimation in point process models of rainfall. Chapter 6 of Statistics in the Environmental and Earth Sciences, eds. A. Walden and P. Guttorp, Halsted Press, New York.

    Google Scholar 

  • Phelan, M.J. and Goodall, C.R. (1990), An assessment of a generalized Waymire—Gupta—Rodriguez-Iturbe model for GARP Atlantic Tropical Experiment rainfall. J. Geophys. Res. 95, 7603–7616.

    Article  Google Scholar 

  • Ripley, B.D. (1981), Spatial Statistics. Wiley, New York.

    Book  MATH  Google Scholar 

  • Robinson, P.J. (1994), Precipitation regime changes over small watersheds. In Statistics for the Environment, Volume 2 ( V. Barnett & F. Turk-man, editors), pp. 43–59. Chichester: John Wiley.

    Google Scholar 

  • Rodriguez-Iturbe, I., Cox, D.R. and Eagleson, P.S. (1986), Spatial modelling of total storm rainfall. Proc. Roy. Soc. Lond. A 403, 27–50.

    Article  Google Scholar 

  • Rodriguez-Iturbe, I., Cox, D.R. and Isham, V. (1987), Some models for rainfall based on stochastic point processes. Proc. Roy. Soc. Lond. A 410, 269–288.

    Article  MathSciNet  MATH  Google Scholar 

  • Rodriguez-Iturbe, I., Cox, D.R. and Isham, V. (1988), A point process model for rainfall: further developments. Proc. Roy. Soc. Lond. A 417, 283–298.

    Article  MathSciNet  MATH  Google Scholar 

  • Smith, A.F.M. and Roberts, G.O. (1993), Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods. J.R. Statist. Soc. B 55, 3–23.

    MathSciNet  MATH  Google Scholar 

  • Smith, R.L. (1994), Spatial modelling of rainfall data. In Statistics for the Environment, Volume 2 ( V. Barnett & F. Turkman, editors), pp. 19–41. Chichester: John Wiley.

    Google Scholar 

  • Stern, R.D. and Coe, R. (1984), A model fitting analysis of daily rainfall data (with discussion). J.R. Statist. Soc. A 147, 1–34.

    Article  Google Scholar 

  • Taylor, G.I. (1938), The spectrum of turbulence. Proc. Roy. Soc. Lond. A 164, 476–490.

    Article  Google Scholar 

  • Tierney, L. (1994), Markov chains for exploring posterior distributions. Ann. Statist. 22, 1701–1728.

    Article  MathSciNet  MATH  Google Scholar 

  • Waymire, E. and Gupta, V.K. (1981a), The mathematical structure of rainfall representations, 1: A review of the stochastic rainfall models. Water Resources Research 17, 1261–1272.

    Article  Google Scholar 

  • Waymire, E. and Gupta, V.K. (1981b), The mathematical structure of rainfall representations, 2: A review of the theory of point processes. Water Resources Research 17, 1273–1285.

    Article  Google Scholar 

  • Waymire, E. and Gupta, V.K. (1981c), The mathematical structure of rainfall representations, 3: Some applications of the point process theory to rainfall processes. Water Resources Research 17, 1287–1294.

    Article  Google Scholar 

  • Waymire, E., Gupta, V.K. and Rodriguez-Iturbe, I. (1984), Spectral theory of rainfall intensity at the meso-β scale. Water Resources Research 20, 1453–1465.

    Article  Google Scholar 

  • Woolhiser, D.A. (1992), Modeling daily precipitation — progress and problems. Chapter 5 of Statistics in the Environmental and Earth Sciences, eds. A. Walden and P. Guttorp, Halsted Press, New York.

    Google Scholar 

Additional References

  • Bilonick, R. A. (1988). “Monthly hydrogen ion deposition maps for the Northeastern U.S. from July 1982 to September 1984,” Atmospheric Environment, 22, 1909–1924.

    Article  Google Scholar 

  • Breslow, N. E. and Clayton, D. G. (1993). “Approximate inference in generalized linear mixed models,” Journal of the American Statistical Association, 88, 9–25.

    MATH  Google Scholar 

  • Breslow, N. E. and Lin, X. (1995). “Bias correction in generalized linear mixed models with a single component of dispersion,” Biometrika, 82, 81–91.

    Article  MathSciNet  MATH  Google Scholar 

  • Diggle, P. J., Liang, K-Y, and Zeger, S. L. (1994). Analysis of Longitudinal Data, Oxford University Press: New York.

    Google Scholar 

  • Drum, M. and McCullagh, P. (1993). “REML Estimation with exact co- variance in the logistic mixed model,” Biometrics, 49, 677–689.

    Article  MathSciNet  MATH  Google Scholar 

  • Journel, A. G. (1983). “Non-parametric estimation of spatial distributions,” Mathematical Geology, 15, 445–468.

    Article  MathSciNet  Google Scholar 

  • Karim, M. R. and Zeger, S. L. (1992). “Generalized linear models with random effects: salamander mating revisited,” Biometrics, 48, 63 1644.

    Google Scholar 

  • McCulloch, C. E. (1994). “Maximum likelihood variance components estimation for binary data,” Journal of the American Statistical Association, 89, 330–335.

    Article  MATH  Google Scholar 

  • Schall, R. (1991). “Estimation in generalized linear models with random effects,” Biometrika, 40, 917–927.

    Google Scholar 

  • Zeger, S. L. and Karim, M. R. (1991). “Generalized linear models with random effects: a Gibbs sampling approach,” Journal of the American Statistical Association, 86, 79–86.

    Article  MathSciNet  Google Scholar 

References

  • Diggle, P.J., Moyeed, R. and Tawn, J.A. (1996), Model-based geostatistics. Technical Report, Lancaster University.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Smith, R.L., Robinson, P.J. (1997). A Bayesian Approach to the Modeling of Spatial-Temporal Precipitation Data. In: Gatsonis, C., Hodges, J.S., Kass, R.E., McCulloch, R., Rossi, P., Singpurwalla, N.D. (eds) Case Studies in Bayesian Statistics. Lecture Notes in Statistics, vol 121. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2290-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2290-3_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-94990-1

  • Online ISBN: 978-1-4612-2290-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics