Skip to main content

Environmental Influences on Ovarian Aging

  • Chapter
Perimenopause

Part of the book series: Serono Symposia USA ((SERONOSYMP))

  • 108 Accesses

Abstract

Our long-term goal is to understand the role played by environmental factors (particularly chemical exposures) in the time-dependent decline in ovarian function in women. Any assessment of the impact of exposures to dietary or environmental chemicals on ovarian function will face the challenge of distinguishing direct or indirect ovarian toxicity from the normal age-dependent depletion of the ovarian follicle reserve due to processes of aging that are (a) intrinsic (such as genetic pleiotropism), and/or (b) extrinsic (such as cumulative oxidative injury, ambient radiation damage, suboptimal macronutrient intake, or stress). If chromosomal, autoimmune, and infectious factors are excluded, some extrinsic exposures that flagrantly affect the number or the rate of depletion of follicles are known. These agents, which are frankly toxic to the ovaries, include heavy metals and chemotherapeutic agents. While these exposures are consequential for specific, restricted groups of humans, ovarian toxicity due to exposure to these particular agents is arguably of limited relevance as an important environmental influence on ovarian aging in the general population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Block E. Quantitative morphological investigations of the follicular system in women. Variations at different ages. Acta Anat 1952;14:108–23.

    Article  PubMed  CAS  Google Scholar 

  2. Baker TG. A quantitative and cytological study of germ cells in human ovaries. Proc R Soc Lond [Biol] 1963;158:417–33.

    Article  CAS  Google Scholar 

  3. Gougeon A. Caracteres qualitatifs et quantitatifs de la population folliculaire dans l’ovaire humain adulte. Contracept Fertil Sexual 1984; 12:527.

    Google Scholar 

  4. Treloar AE. Menstrual cyclicity and the pre-menopause. Maturitas 1981; 3:249–64.

    Article  PubMed  CAS  Google Scholar 

  5. Vollman RF. Major problems in obstetrics and gynecology, vol. 7. Philadelphia: WB Saunders, 1977.

    Google Scholar 

  6. Sherman BM, West JH, Korenman SG. The menopausal transition: analysis of LH, FSH, estradiol, and progesterone concentrations during menstrual cycles of older women. J Clin Endocrinol Metab 1976;42:629–36.

    Article  PubMed  CAS  Google Scholar 

  7. Van Look PF, Lothian H, Hunter WM, Michie WA, Baird DT. Hypothalamic-pituitary-ovarian function in perimenopausal women. Clin Endocrinol 1977; 7:13–31.

    Article  Google Scholar 

  8. Metcalf MG, Donald RA, Livesey JH. Classification of menstrual cycles in pre-and perimenopausal women. J Endocrinol 1981;91:1–10.

    Article  PubMed  CAS  Google Scholar 

  9. Metcalf MG, Donald RA, Livesey JH. Pituitary-ovarian function in normal women during the menopausal transition. Clin Endocrinol 1981;14:245–55.

    Article  CAS  Google Scholar 

  10. Richardson SJ, Senikas V, Nelson JF. Follicular depletion during the menopausal transition: evidence for accelerated loss and ultimate exhaustion. J Clin Endocrinol Metab 1987;65:1231–7.

    Article  PubMed  CAS  Google Scholar 

  11. Mandl AM, Zuckerman S. The numbers of normal and atretic ova in the mature rat. J Endocrinol 1951;6:426–35.

    Article  Google Scholar 

  12. Mandl AM, Zuckerman S. The relation of age to numbers of oocytes. J Endocrinol 1951;7:190–3.

    Article  PubMed  CAS  Google Scholar 

  13. Green SH, Zuckerman S. The number of oocytes in the mature rhesus monkeys (Macaca mulatta). J Endocrinol 1951;7:194–202.

    Article  PubMed  CAS  Google Scholar 

  14. Green SH, Zuckerman S. Further observations on oocyte numbers in mature rhesus monkeys (Macaca mulatta). J Endocrinol 1954;10:284–90.

    Article  PubMed  CAS  Google Scholar 

  15. Baker TG. The sensitivity of oocytes in post-natal rhesus monkeys to x-irradiation. J Reprod Fertil 1966;12:183–92.

    Article  PubMed  CAS  Google Scholar 

  16. Baker TG. Radiosensitivity of mammalian oocytes with particular reference to the human female. Am J Obstet Gynecol 1971;110:746–61.

    PubMed  CAS  Google Scholar 

  17. Danforth DR, Chillik F, Hertz R, Hodgen GD. Effects of ovarian tissue reduction on the menstrual cycle: persistent normalcy after near-total oophorectomy. Biol Reprod 1985;41:355–60.

    Article  Google Scholar 

  18. Ataya K, Rao LV, Lawrence E, Kimmel R. Luteinizing hormone-releasing hormone agonist inhibits cyclophosphamide-induced ovarian follicular depletion in rhesus monkeys. Biol Reprod 1995;52:365–72.

    Article  PubMed  CAS  Google Scholar 

  19. Ataya K, Pydyn E, Ramahi-Ataya A, Orton CG. Is radiation-induced ovarian failure in rhesus monkeys preventable by luteinizing hormone-releasing hormone agonists? Preliminary observations. J Clin Endocrinol Metab 1995;80:790–5.

    Article  PubMed  CAS  Google Scholar 

  20. Reyes FI, Winter JSD, Faiman C. Pituitary-ovarian relationships preceding the menopause: 1. A cross-sectional study of serum follicle stimulating hormone, luteinizing hormone, estradiol, and progesterone levels. Am J Obstet Gynecol 1977;129:557–64.

    PubMed  CAS  Google Scholar 

  21. Rannevik G, Carlström K, Jeppsson S, Bjerre B, Svanberg L. A prospective long-term study in women from pre-menopause to post-menopause: changing profiles of gonadotrophins, oestrogens and androgens. Maturitas 1986; 8:297–307.

    Article  PubMed  CAS  Google Scholar 

  22. Jarrell J, Mattison DR, McMahon A, Younglai EV. An evaluation of the serum FSH as a biomarker for ovarian toxicity in the rat. Reprod Toxicol 1988; 2:111–5.

    Article  PubMed  CAS  Google Scholar 

  23. Marcus M, Grunfeld L, Berkowitz G, Kaplan P, Godbold J. Urinary follicle-stimulating hormone as a biological marker of ovarian toxicity. Fertil Steril 1993;59:931–2.

    PubMed  CAS  Google Scholar 

  24. Cooper GS, Baird DD, Hulka BS, Weinberg CR, Savitz DA, Hughes CL Jr. Follicle-stimulating hormone concentrations in relation to active and passive smoking. Obstet Gynecol 1995;85:407–11.

    Article  PubMed  CAS  Google Scholar 

  25. Cooper GS, Hulka BS, Baird DD, et al. Galactose consumption, metabolism, and follicle-stimulating hormone concentrations in women of late reproductive age. Fertil Steril 1994;62:1168–75.

    PubMed  CAS  Google Scholar 

  26. Midgette AS, Baron JA. Cigarette smoking and the risk of natural menopause. Epidemiology 1990;1:474–80.

    Article  PubMed  CAS  Google Scholar 

  27. Kaufman DW, Slone D, Rosenberg L, Miettinen OS, Shapiro S. Cigarette smoking and age at natural menopause. Am J Public Health 1980;70:420–2.

    Article  PubMed  CAS  Google Scholar 

  28. Adena MA, Gallagher HG. Cigarette smoking and the age at menopause. Ann Hum Biol 1982;9:121–30.

    Article  PubMed  CAS  Google Scholar 

  29. Hiatt RA, Fireman BH. Smoking, menopause, and breast cancer. J Natl Cancer Inst 1986;76:833–8.

    PubMed  CAS  Google Scholar 

  30. Jick H, Porter J, Morrison AS. Relation between smoking and age of natural menopause. Lancet 1977;1:1354–5.

    Article  PubMed  CAS  Google Scholar 

  31. Lindquist O, Bengtsson C. Menopausal age in relation to smoking. Acta Med Scand 1979;205:73–7.

    Article  PubMed  CAS  Google Scholar 

  32. Willett W, Stampfer MJ, Bain C, et al. Cigarette smoking, relative weight, and menopause. Am J Epidemiol 1983;117:651–8.

    PubMed  CAS  Google Scholar 

  33. McKinlay SM, Bifano NL, McKinlay JB. Smoking and age at menopause in women. Ann Intern Med 1985;103:350–6.

    PubMed  CAS  Google Scholar 

  34. Andersen FS, Transbol I, Christiansen C. Is cigarette smoking a promoter of the menopause? Acta Med Scand 1982;212:137–9.

    Article  PubMed  CAS  Google Scholar 

  35. Parazzini F, Negri E, La Vecchia C. Reproductive and general lifestyle determinants of age at menopause. Maturitas 1992;15:141–9.

    Article  PubMed  CAS  Google Scholar 

  36. Everson RB, Sandler DP, Wilcox AJ, Schreinemachers D, Shore DL, Weinberg C. Effect of passive exposure to smoking on age at natural menopause. Br Med J 1986;1:792.

    Article  Google Scholar 

  37. Baird DD, Wilcox AJ. Cigarette smoking associated with delayed conception. JAMA 1985;253:2979–83.

    Article  PubMed  CAS  Google Scholar 

  38. Brown S, Martin V, Stratton L. The influence of method of contraception and cigarette smoking on menstrual patterns. Br J Obstet Gynaecol 1988;95:905–10.

    Article  PubMed  CAS  Google Scholar 

  39. Cramer DW, Barbieri RL, Xu H, Reichardt JKV. Determinants of basal follicle-stimulating hormone levels in premenopausal women. J Clin Endocrinol Metab 1994;79:1105–9.

    Article  PubMed  CAS  Google Scholar 

  40. Mattison DR. Clinical manifestations of ovarian toxicity. In Dixon RL, ed. Reproductive toxicology. New York: Raven Press, 1985:109–30.

    Google Scholar 

  41. Thomford PJ, Jelovsek FR, Mattison DR. Effect of oocyte number and rate of atresia on the age of menopause. Reprod Toxicol 1987;1:41–51.

    Article  PubMed  CAS  Google Scholar 

  42. McKinlay SM, Brambilla DJ, Posner JG. The normal menopause transition. Maturitas 1992;14:103–15.

    Article  PubMed  CAS  Google Scholar 

  43. Shils ME, Young VR, eds. Modern nutrition in health and disease. Philadelphia: Lea & Febiger, 1988: 1372–9, 1596, 1644.

    Google Scholar 

  44. Segal S. Disorders of galactose metabolism. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds. The metabolic basis of inherited disease. New York: McGraw-Hill, 1989:453–80.

    Google Scholar 

  45. Kaufman FR, Kogut MD, Donnell GN, Goebelsmann U, March C, Koch R. Hypergonadotropic hypogonadism in female patients with galactosemia. N Engl J Med 1981;304:994–8.

    Article  PubMed  CAS  Google Scholar 

  46. Kaufman FR, Donnell GN, Roe TF, Kogut MD. Gonadal function in patients with galactosaemia. J Inherited Metab Dis 1986;9:140–6.

    Article  PubMed  CAS  Google Scholar 

  47. Waggoner DD, Buist NRM, Donnell GN. Long-term prognosis in galactosemia: results of a survey of 350 cases. J Inherited Metab Dis 1990;13:802–18.

    Article  PubMed  CAS  Google Scholar 

  48. Cramer DW, Harlow BL, Barbieri RL, Ng WG. Galactose-1-phosphate uridyl transferase activity associated with age at menopause and reproductive history. Fertil Steril 1989;51:609–15.

    PubMed  CAS  Google Scholar 

  49. Kelley RI, Segal S. Evaluation of reduced activity of galactose-1-phosphate uridyl transferase by combined radioisotopic assay and high resolution isoelectric focusing. J Lab Clin Med 1989;114:152–6.

    PubMed  CAS  Google Scholar 

  50. Chen YT, Mattison DR, Feigenbaum L, Fukui H, Schulman JD. Reduction, in oocyte number following prenatal exposure to a diet high in galactose. Science 1981;214:1145–7.

    Article  PubMed  CAS  Google Scholar 

  51. Swartz WJ, Mattison DR. Galactose inhibition of ovulation in mice. Fertil Steril 1988;49:522–6.

    PubMed  CAS  Google Scholar 

  52. Meyer WR, Doyle MB, Grifo JA, et al. Aldose reductase inhibition prevents galactose-induced ovarian dysfunction in the Sprague-Dawley rat. Am J Obstet Gynecol 1992;167:1837–43.

    PubMed  CAS  Google Scholar 

  53. Xu YK, Ng WG, Kaufman FR, Lobo RA, Donnell GN. Galactose metabolism in human ovarian tissue. Pediatr Res 1989;25:151–5.

    Article  PubMed  CAS  Google Scholar 

  54. Cramer DW, Harlow BL, Willett WC, et al. Galactose consumption and metabolism in relation to the risk of ovarian cancer. Lancet 1989;2:66–71.

    Article  PubMed  CAS  Google Scholar 

  55. Falch JA, Oftebro H, Haug E. Early postmenopausal bone loss is not associated with a decrease in circulating levels of 25-hydroxyvitamin D, 1,25-dihydroxy-vitamin D, or vitamin D-binding protein. J Clin Endocrinol Metab 1987; 64:836–41.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Hughes, C.L., Cooper, G.S. (1997). Environmental Influences on Ovarian Aging. In: Lobo, R.A. (eds) Perimenopause. Serono Symposia USA. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2288-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2288-0_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7488-9

  • Online ISBN: 978-1-4612-2288-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics