Skip to main content

Meiosis, Aneuploidy, and Maternal Aging

  • Chapter
Perimenopause

Part of the book series: Serono Symposia USA ((SERONOSYMP))

  • 108 Accesses

Abstract

It is well recognized that reproductive failure in individuals who are past their prime reproductive years is often associated with an increased incidence of offspring suffering from the effects of nondisjunction (e.g., Down syndrome) or aneuploidy, and a generalized increase in spontaneous abortion (1–3). This is a significant public health issue because many women are currently attempting to reproduce when they are older and thus biologically less fertile (4–6). Since 1980 the first-birth rate for women aged 35 to 39 increased 81% in the United States (6). However, through the use of donor oocytes with in vitro fertilization it has become clear that the uterine environment in many older women is fully competent to carry a pregnancy (7). Frequently, however, they encounter reproductive failure that can be attributed to the quality of the oocyte as related to meiotic nondisjunction. Abnormal chromosome complements are often found in oocytes from aging oocyte donors including hyperhaploid and hypohaploid conditions (8). The possible causes of such failure are complex and related to both structural and genetic alterations in the egg that lead to abnormal meiosis and embryonic development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Butcher RL, Fugo NW. Overripeness and the mammalian ova. II. Delayed ovulation and chromosome anomalies. Fertil Steril 1967;18:297–302.

    PubMed  CAS  Google Scholar 

  2. Hook E. Rates of chromosomal abnormalities at different maternal ages. Obstet Gynecol 1981;58:282.

    PubMed  CAS  Google Scholar 

  3. Lanman JT. Delays during reproduction and their effects on the embryo and fetus. N Engl J Med 1968;278:1047–1054.

    Article  PubMed  CAS  Google Scholar 

  4. Hollander D, Breen JL. Pregnancy in the older gravida: how old is old? Obstet Gynecol Surv 1991;45:106–12.

    Article  Google Scholar 

  5. National Center for Health Statistics Advance report of final marriage statistics, 1986. Monthly Vital Stat Rep 1989;38:1–6.

    Google Scholar 

  6. National Center for Health Statistics Advance report of final natality statistics, 1986. Monthly Vital Stat Rep 1988;37:1–7.

    Google Scholar 

  7. Meldrum DR. Female reproductive aging—ovarian and uterine factors. Fertil Steril 1993;59:1–5.

    PubMed  CAS  Google Scholar 

  8. Angell RR, Ledger W, Yong EL, Harkness L, Baird DT. Cytogenetic analysis of unfertilized human oocytes. Hum Reprod 1991;6:568–73.

    PubMed  CAS  Google Scholar 

  9. Longo FJ. Aging of mouse eggs in vivo and in vitro. Gamete Res 1980; 3:379–93.

    Article  Google Scholar 

  10. Longo FJ. Changes in the zonae pellucidae and plasmalemmae of aging mouse eggs. Biol Reprod 1981;25:399–411.

    Article  PubMed  CAS  Google Scholar 

  11. Szollosi D. Mammalian eggs aging in the fallopian tubes. In: Blandau RJ, ed. Aging gametes. Their biology and pathology. 1975.

    Google Scholar 

  12. Homa ST. Calcium and meiotic maturation of the mammalian oocyte. Mol Reprod Dev 1995;40:122–34.

    Article  PubMed  CAS  Google Scholar 

  13. Calarco PG, Donahue RP, Szollosi D. Germinal vesicle breakdown in the mouse oocyte. J Cell Sci 1972;10:369–385.

    PubMed  CAS  Google Scholar 

  14. Cuthbertson KSR. Free Ca2+ increases in exponential phases during mouse oocyte activation. Nature 1981;294:754–57.

    Article  PubMed  CAS  Google Scholar 

  15. Yanagimachi R. Requirement of extracellular calcium ions for various stages of fertilization and fertilization related phenomena in the hamster. Gamete Res 1982;5:323–44.

    Article  CAS  Google Scholar 

  16. McIntosh JR. Spindle structure and the mechanisms of chromosome movement. In: Dellarco VL, Voytek PE, eds. Aneuploidy. Etiology and mechanisms. New York: Plenum Press, 1985.

    Google Scholar 

  17. Wassarman PM, Fujiwara K. Immunofluorescent anti-tubulin staining of spindles during meiotic maturation of mouse oocytes in vitro. J Cell Sci 1978;29:171–88.

    PubMed  CAS  Google Scholar 

  18. Wickramashinghe D, Ebert KM, Albertini DF. Meiotic competence acquisition is associated with the appearance of M-phase characteristics in growing mouse oocytes. Dev Biol 1991;143:162–72.

    Article  Google Scholar 

  19. Albertini DF. Cytoplasmic reorganization during the resumption of meiosis in cultured preovulatory rat oocytes. Dev Biol 1987;120:121–31.

    Article  PubMed  CAS  Google Scholar 

  20. Maro B, Johnson NH, Pickering SJ, Flach G. Changes in actin distribution during fertilization of the mouse egg. J Embryol Exp Morphol 1984;81: 211–37.

    PubMed  CAS  Google Scholar 

  21. Battaglia DE, Gaddum-Rosse P. The distribution of polymerized actin in the rat egg and its sensitivity to cytochalasin B during fertilization. J Exp Zool 1986;237:97–105.

    Article  PubMed  CAS  Google Scholar 

  22. Battaglia DE, Gaddum-Rosse P. Influence of the calcium ionophore A23187 on rat egg behavior and cortical F-actin. Gamete Res 1987;18:141–52.

    Article  PubMed  CAS  Google Scholar 

  23. Hummler E, Hansmann I. Preferential nondisjunction of specific bivalents in oocytes from Djungarian hamsters following colchicine treatment. Cytogenet Cell Genet 1985;39:161–7.

    Article  PubMed  CAS  Google Scholar 

  24. Hummler E, Hansmann I. Pattern and frequency of nondisjunction in oocytes from the Djungarian hamster are determined by the stage of first meiotic spindle inhibition. Chromosoma 1988;97:224–30.

    Article  PubMed  CAS  Google Scholar 

  25. Mikamo K. Mechanism of non-disjunction of meiotic chromosomes and of degeneration of maturation spindles in eggs affected by intrafollicular overripeness. Experientia 1968;24:75–8.

    Article  PubMed  CAS  Google Scholar 

  26. Gosden RG. Chromosome anomalies of pre-implantation mouse embryos in relation to maternal age. J Reprod Fertil 1973;35:351–4.

    Article  PubMed  CAS  Google Scholar 

  27. Brook JD, Gosden RG, Chandley AC. Maternal ageing and aneuploid embryos—evidence from the mouse that biological and not chronological age is the important influence. Hum Genet 1984;66:41–5.

    Article  PubMed  CAS  Google Scholar 

  28. Eichenlaub-Ritter U, Chandley AC, Gosden RG. The CBA mouse as a model for age-related aneuploidy in man: studies of oocyte maturation, spindle formation and chromosome alignment during meiosis. Chromosoma 1988; 96:220–6.

    Article  PubMed  CAS  Google Scholar 

  29. Eichenlaub-Ritter U, Boll I. Nocodazole sensitivity, age-related aneuploidy, and alterations in the cell cycle during maturation of mouse oocytes. Cytogenet Cell Genet 1989;52:170–6.

    Article  PubMed  CAS  Google Scholar 

  30. Egozcue J. Cellular aspects of in vitro fertilization. Ultrastructural and cytogenetic studies of human gametes and zygotes. Revis Biol Celular 1987; 13:1–104.

    Google Scholar 

  31. Pickering SJ, Braude PR, Johnson MH, Cant A, Currie J. Transient cooling to room temperature can cause irreversible disruption of the meiotic spindle in the human oocyte. Fertil Steril 1990;54:102–8.

    PubMed  CAS  Google Scholar 

  32. Pickering SJ, Johnson MH, Braude PR, Houliston E. Cytoskeletal organization in fresh, aged and spontaneously activated human oocytes. Hum Reprod 1988;3:978–89.

    PubMed  CAS  Google Scholar 

  33. Battaglia DE, Soules MR. Maternal aging and regulation of meiosis in the human oocyte. Society for Gynecologic Investigation Abstracts, 1994.

    Google Scholar 

  34. Szollosi D, Ozil JP. De novo formation of centrioles in parthenogenetically activated diploidized rabbit embryos. Biol Cell 1991;72:61–6.

    Article  PubMed  CAS  Google Scholar 

  35. Schatten G, Simerly C, Schatten H. Microtubule configurations during fertilization, mitosis and early development in the mouse and the requirement for egg microtubule-mediated motility during mammalian fertilization. Proc Natl Acad Sci USA 1985;82:4152–6.

    Article  PubMed  CAS  Google Scholar 

  36. Maro B, Howlett SK, Webb M. Non-spindle microtubule organizing centers in metaphase II-arrested mouse oocytes. J Cell Biol 1985;101:1665–72.

    Article  PubMed  CAS  Google Scholar 

  37. Schatten H, Walter M, Biessmann H, Schatten G. Activation of maternal centrosomes in unfertilized sea urchin eggs. Cell Motil Cytoskel 1992;23:61–70.

    Article  CAS  Google Scholar 

  38. Rime H, Jessus C, Ozon R. Distribution of microtubules during the first meiotic cell division in the mouse oocyte: effect of taxol. Gamete Res 1987;17:1–13.

    Article  PubMed  CAS  Google Scholar 

  39. Albertini DF. Cytoplasmic reorganization during the resumption of meiosis in cultured preovulatory rat oocytes. Dev Biol 1987;120:121–31.

    Article  PubMed  CAS  Google Scholar 

  40. Messinger SM, Albertini DF. Centrosome and microtubule dynamics during meiotic progression in the mouse oocyte. J Cell Sci 1991;100:289–98.

    PubMed  Google Scholar 

  41. Mattson BA, Albertini DF. Oogenesis: chromatin and microtubule dynamics during meiotic prophase. Mol Reprod Dev 1990;25:374–83.

    Article  PubMed  CAS  Google Scholar 

  42. Albertini DF. Regulation of meiotic maturation in the mammalian oocyte— interplay between exogenous cues and the microtubule cytoskeleton. Bioessays 1992;14:97–103.

    Article  PubMed  CAS  Google Scholar 

  43. Albertini DF. Cytoplasmic reorganization during the resumption of meiosis in cultured preovulatory rat oocytes. Dev Biol 1987;120:121–31.

    Article  PubMed  CAS  Google Scholar 

  44. Manfredi JJ, Horwitz SB. Taxol: an antimitotic agent with a new mechanism of action. Pharmacol Ther 1984;25:83–125.

    Article  PubMed  CAS  Google Scholar 

  45. Doxsey SJ, Stein P, Evans L, Calarco PD, Kirschner M. Pericentrin, a highly conserved centrosome protein involved in microtubule organization. Cell 1994;76:639–50.

    Article  PubMed  CAS  Google Scholar 

  46. Archer J, Solomon F. Deconstructing the microtubule-organizing center. Cell 1994;76:589–91.

    Article  PubMed  CAS  Google Scholar 

  47. Beach DH, Durkacz B, Nurse PM. Functionally homologous cell cycle control genes in budding and fission yeast. Nature 1982;300:706–9.

    Article  PubMed  CAS  Google Scholar 

  48. Nurse P, Thuriaux P, Nasmyth K. Genetic control of the cell division cycle in the fission yeast Schizosaccharomyces pombe. Mol Gen Genet 1976; 146:167–76.

    Article  PubMed  CAS  Google Scholar 

  49. Riabowol K, Draetta G, Brizuela L, Vandre D, Beach D. The cdc2 kinase is a nuclear protein that is essential for mitosis in mammalian cells. Cell 1989; 57:393–401.

    Article  PubMed  CAS  Google Scholar 

  50. Rattner JB, Lew J, Wang JH. cdc2 kinase is localized to distinct domains within the mitotic apparatus. Cell Motil Cytoskel 1990;17:227–35.

    Article  CAS  Google Scholar 

  51. Bailly E, Doree M, Nurse P, Boraens M. cdc2 is located in both nucleus and cytoplasm. Part is centrosomally associated at G2/M and enters vesicle at anaphase. EMBO J 1989;8:3985–3995.

    PubMed  CAS  Google Scholar 

  52. Fellous A, Kubelka M, Thibier C, Taieb F, Haccard O, Jessus C. Association of cdc2 kinase and MAP kinase with microtubules during the meiotic maturation of Xenopus oocytes. Int J Dev Biol 1994;38:651–659.

    PubMed  CAS  Google Scholar 

  53. Guerrier P, Colas P, Neant I. Meiosis reinitiation as a model system for the study of cell division and cell differentiation. In. J Devel Biol 1990;34:93–109.

    CAS  Google Scholar 

  54. Downs SM. Protein synthesis inhibitors prevent both spontaneous and hormone-dependent maturation of isolated mouse oocytes. Mol Reprod Dev 1990; 27:235–43.

    Article  PubMed  CAS  Google Scholar 

  55. Motlik S, Rimkevicova Z. Combined effects of protein synthesis and phosphorylation inhibitors on maturation of mouse oocytes in vitro. Mol Reprod Dev 1990;27:230–4.

    Article  PubMed  CAS  Google Scholar 

  56. Verde F, Labbe J, Doree M, Karsenti E. Regulation of microtubule dynamics by cdc 2 protein kinase in cell-free extracts of Xenopus eggs. Nature 1990; 343:233–8.

    Article  PubMed  CAS  Google Scholar 

  57. Belle R, Cormier P, Poulhe R, Morales J, Huchon D, Mulner-Lorillon O. Protein phosphorylation during meiotic maturation of Xenopus oocytes: cdc2 protein kinase targets. Int J Dev Biol 1990;34:111–5.

    PubMed  CAS  Google Scholar 

  58. Chesnel F, Eppig JJ. Synthesis and accumulation of cdc2 and cyclin B in mouse oocytes during acquisition of competence to resume meiosis. Mol Reprod Dev 1995;40:503–8.

    Article  PubMed  CAS  Google Scholar 

  59. Solomon MJ, Lee T, Kirschner MW. Role of phosphorylation in cdc2 activation: identification of an activating kinase. Mol Biol Cell 1992;3:13–27.

    PubMed  CAS  Google Scholar 

  60. Rime H, Ozon R. Protein phosphatases are involved in the in vivo activation of histone H1 kinase in mouse oocyte. Dev Biol 1990;141:115–22.

    Article  PubMed  CAS  Google Scholar 

  61. Kamagai A, Dunphy WG. The cdc 25 protein controls tyrosine dephosphorylation of the cdc 2 protein in a cell-free system. Cell 1991;64:903–14.

    Article  Google Scholar 

  62. Rime H, Huchon D, De-Smedt V, et al. Microinjection of cdc25 protein phosphatase into Xenopus prophase oocyte activates MPF and arrests meiosis at metaphase I. Biol Cell 1994;82:11–22.

    Article  PubMed  CAS  Google Scholar 

  63. Draetta G, Luca F, Westendorf J, Brizuela L, Ruderman J, Beach D. cdc2 protein kinase is complexed with both cyclin A and B: evidence for proteolytic inactivation of MPF. Cell 1989;56:829–38.

    Article  PubMed  CAS  Google Scholar 

  64. Meijer L, Azzi L, Wang JYJ. Cyclin-B targets cdc2 for tyrosine phosphorylation. EMBO J 1991;10:1545–54.

    PubMed  CAS  Google Scholar 

  65. Choi T, Aoki F, Mori M, Yamashita M, Nagahama Y, Kohmoto K. Activation of cdc2 protein kinase activity in meiotic and mitotic cell cycles in mouse oocytes and embryos. Development 1991;113:789–95.

    PubMed  CAS  Google Scholar 

  66. Buendia B, Draetta G, Karsenti E. Regulation of the microtubule nucleating activity of centrosomes in Xenopus egg extracts—role of cyclin-A-associated protein kinase. J Cell Biol 1992;116:1431–42.

    Article  PubMed  CAS  Google Scholar 

  67. Kumagai A, Dunphy WG. Control of the cdc2/cyclin B complex in Xenopus egg extracts arrested at a G2/M checkpoint with DNA synthesis inhibitors. Mol Biol Cell 1995;6:199–213.

    PubMed  CAS  Google Scholar 

  68. Mutter GL, Wolgemuth DJ. Distinct developmental patterns of c-mos protooncogene expression in female and male mouse cells. Proc Natl Acad Sci 1987;84:5301–5.

    Article  PubMed  CAS  Google Scholar 

  69. O’Keefe SJ, Wolfes H, Kiessling AA, Cooper GM. Microinjection of anitsense c-mos oligoncleotides prevents meiosis II in the maturing mouse egg. Proc Natl Acad Sci USA 1989;86:7038–42.

    Article  PubMed  Google Scholar 

  70. Pal SK, Crowell R, Kiessling AA, Cooper GM. Expression of proto-oncogenes in mouse eggs and preimplantation embryos. Mol Reprod Dev 1993;35:8–15.

    Article  PubMed  CAS  Google Scholar 

  71. Hunt T. Cell cycle arrest and c-mos. Nature 1992;355:587–8.

    Article  PubMed  CAS  Google Scholar 

  72. Yew N, Strobel M, Vande-Woude GF. Mos and the cell cycle: the molecular basis of the transformed phenotype. Curr Opin Genet Dev 1993;3:19–25.

    Article  PubMed  CAS  Google Scholar 

  73. Pal SK, Torry SK, Serta R, et al. Expression and potential function of the c-mos proto-oncogene in human eggs. Fertil Steril 1994;61:496–503.

    PubMed  CAS  Google Scholar 

  74. Zheng CJ, Byers B. Oocyte selection: a new model for the maternal-age dependence of Down syndrome [see comments]. Hum Genet 1992;90:1–6.

    Article  PubMed  CAS  Google Scholar 

  75. Sherman B, West J, Korenman S. The menopausal transition: analysis of LH, FSH, estradiol, and progesterone concentrations during the menstrual cycles of older women. J Clin Endocrinol Metab 1976;42:629–36.

    Article  PubMed  CAS  Google Scholar 

  76. Reyes F, Winter J, Fairman C. Pituitary-ovarian relationships preceding the menopause. I. A cross-sectional study of serum follicle-stimulating hormone, luteininzing hormone, prolactin, estradiol and progesterone levels. Am J Obstet Gynecol 1977;129:557–64.

    PubMed  CAS  Google Scholar 

  77. MacNaughton J, Bangah M, McCloud P, Hee J, Burger H. Age related changes in follicle stimulating hormone, oestradiol and immunoreactive inhibin in women of reproductive age. Clin Endocrinol 1992;36:339.

    Article  CAS  Google Scholar 

  78. Hee J, MacNaughton J, Bangah M, Burger H. Perimenopausal patterns of gonadotropins, immunoreactive inhibin, oestradiol and progesterone. Maturitas 1993;18:9–20.

    Article  PubMed  CAS  Google Scholar 

  79. Klein NA, Battaglia DE, Miller PB, Branigan EF, Giudice LC, Soules MR. Ovarian follicular development and the follicular fluid hormones and growth factors in normal women of advanced reproductive age. J Clin Endocrinol Metab 1996;81:1946–51.

    Article  PubMed  CAS  Google Scholar 

  80. Klein NA, Battaglia DE, Fujimoto VY, Davis GS, Bremner WJ, Soules MR. Reproductive aging: accelerated ovarian follicular development associated with a monotropic follicle-stimulating hormone rise in normal older women. J Clin Endocrinol Metab 1996;81:1038–45.

    Article  PubMed  CAS  Google Scholar 

  81. Faddy MJ, Gosden RG, Gougeon A, Richardson SJ, Nelson JF. Accelerated disappearance of ovarian follicles in mid-life: implications for forecasting menopause. Hum Reprod 1992;7:1342–6.

    PubMed  CAS  Google Scholar 

  82. Gougeon A, Ecochard R, Thalabard JC. Age-related changes of the population of human ovarian folheies: increase in the disappearance rate of nongrowing and early-growing follicles in aging women. Biol Reprod 1994; 50:653–63.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Battaglia, D.E. (1997). Meiosis, Aneuploidy, and Maternal Aging. In: Lobo, R.A. (eds) Perimenopause. Serono Symposia USA. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2288-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2288-0_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7488-9

  • Online ISBN: 978-1-4612-2288-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics