Skip to main content

Changes in Oocyte Number with Age: Effect on Fecundability

  • Chapter
Perimenopause

Part of the book series: Serono Symposia USA ((SERONOSYMP))

  • 129 Accesses

Abstract

The oocyte reservoir in women is completed during fetal life during which time its progressive depletion starts and continues until a few years after menopause. Following the age of 30, this decrease in the oocyte reservoir is accompanied by a decrease in fertility potential (1). Although still a debatable issue, it is clear that this age-related reduction in fecundity is primarily due to oocyte aging rather than that of the uterus, because the implantation rate in older women, particularly women over 40, is tremendously improved and is equal to that of younger women when donated oocytes from younger women are used (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Maroulis GB. Effect of aging on fertility and pregnancy. Sem Reprod Endocrinol 1991;9:165.

    Article  Google Scholar 

  2. Sauer MV, Paulson RJ, Lobo RA. Reversing the natural decline in human fertility. An extended clinical trial of oocyte donation to women of advanced reproductive age. JAMA 1992;268:1275.

    Article  PubMed  CAS  Google Scholar 

  3. Costoff A, Mahesh VB. Primordial follicles with normal oocytes in the ovaries of post-menopausal women. J Am Geriatr Soc 1975;23:193.

    PubMed  CAS  Google Scholar 

  4. Zamboni L, Upadhyay S, Bezard J, et al. The role of mesonephros in the development of the mammalian ovary. In: Tozzini RI, Reeves G, Pineda RL, eds. Endocrine physiopathology of the ovary. Amsterdam: Elsevier/North Holland Biomedical Press, 1980:3–42.

    Google Scholar 

  5. Baker TG. A quantitative and cytological study of germ cells in human ovaries. Proc R Soc Lond [Biol] 1963;158:417.

    Article  CAS  Google Scholar 

  6. Bonilla-Musoles F, Renan J, Hernandez-Yago J, Torres J. How do oocytes disappear? Arch Gynaecol 1975;218:233–241.

    Article  CAS  Google Scholar 

  7. Peters H, Hyskow AG, Grinsted J. Follicular growth in fetal and prepubertal ovaries in humans and other primates. J Clin Endocrinol Metab 1978;7:469–85.

    Article  CAS  Google Scholar 

  8. Ross GT, Vande Wiele RL. The ovaries. In: Williams RH, ed. Williams’ textbook of endocrinology. Baltimore: W.B. Saunders, 1981:355–99.

    Google Scholar 

  9. Peters H, Himelstein-Braw R, Faber M. The normal development of the ovary in childhood. Acta Endocrinol 1976;2:617–30.

    Google Scholar 

  10. Block E. Quantitative morphological investigation of the follicular system in women. Acta Anat 1952;14:108–23.

    Article  PubMed  CAS  Google Scholar 

  11. Nicosia SV. Morphological changes of the human ovary throughout life. In: Serra GB, ed. The ovary. New York: Raven Press, 1983:57–81.

    Google Scholar 

  12. Cha KY, Koo JJ, Ko JJ, et al. Pregnancy after in vitro fertilization of human follicular oocytes collected from nonstimulated cycles, their culture in vitro and their transfer in a donor oocyte program. Fertil Steril 1991;55:109–13.

    PubMed  CAS  Google Scholar 

  13. Gougeon A, Ecochard R, Thalabard JC. Age related changes of the population of human ovarian follicles increase in the disappearance rate of non-growing and early growing follicles in aging women. Biol Reprod 1994;50:653–63.

    Article  PubMed  CAS  Google Scholar 

  14. Richardson SJ, Senikas V, Nelson JF. Follicular depletion during the menopausal transition. Evidence for accelerated loss and ultimate exhaustion. J Clin Endocrinol Metab 1987;65:1231–37.

    Article  PubMed  CAS  Google Scholar 

  15. Gougeon A, Lefevre B, Testart J. Influence of a gonadotropin-releasing hormone agonist and gonadotropins: morphometric characteristics of the population of the small ovarian follicles in cynomolgus monkey. J Reprod Fertil 1992;95:567–75.

    Article  PubMed  CAS  Google Scholar 

  16. Gougeon A. Dynamics of human follicular growth. In: Adashi E, Leung PCK, eds. The ovary. New York: Raven Press, 1993:21–39.

    Google Scholar 

  17. Thung PTA. Aging changes in the ovary. In: Bourne GH, ed. Structural aspects of aging. London: Pitman Medical, 19XX:109–42.

    Google Scholar 

  18. Van Keep PA, Brand PC, Hebert P. Factors affecting the age at menopause. J Biosoc Sci Suppl 1979;6:37–55.

    PubMed  Google Scholar 

  19. Keefe DL, Niven-Fairchild T, Power S, Buradagunta S. Mitochondrial deoxyribonucleic acid deletions in oocytes and productive aging in women. Fertil Steril 1995;65:577.

    Google Scholar 

  20. Finch CE. The evolution of ovarian oocyte decline with aging and possible relationships to Down syndrome and Alzheimer’s disease. Exp Gerontol 1994; 29:299.

    Article  PubMed  CAS  Google Scholar 

  21. Macas E, Floersheim, Hotz E, et al. Abnormal chromosomal arrangements in human oocytes. Hum Reprod 1990;5:703.

    PubMed  CAS  Google Scholar 

  22. Planchot M, DeGrouchy J, Junca AM, et al. Chromosomal analysis of human oocytes and embryos in an in-vitro fertilization program. Am Natl Acad Sci 1988;541:384–97.

    Article  Google Scholar 

  23. Kline J, Levin B. Trisomy and age at menopause: predicted association given a link with rate of oocyte atresia. Pediatr Perinat Epidemiol 1992;6:225–39.

    Article  CAS  Google Scholar 

  24. Brook J, Grosden G, Chandley AC. Maternal aging and aneuploid embryos: evidence for the mouse that biological and not chronological age is the important influence. Hum Genet 1084;66:41–5.

    Article  Google Scholar 

  25. King CR, Magenis E, Rennett S. Pregnancy and the Turner syndrome. Obstet Gynecol 1978;52:617–24.

    PubMed  CAS  Google Scholar 

  26. Kline J, Levin B, Shrout P, Stein Z, Susser M, Warburton D. Maternal smoking and trisomy among spontaneously aborted conceptions. Am J Hum Genet 1983;35:421–31.

    PubMed  CAS  Google Scholar 

  27. Toner JP, Scott RD. Chronologic vs. ovarian age: impact of pregnancy among infertile couples. Semin Reprod Endocrinol 1995;13:1.

    Article  Google Scholar 

  28. Khalifa E, Toner JP, Muasher SJ, Acosta AA. Significance of basal (day 3) FSH levels in women with one ovary in a program of IVF. Fertil Steril 1992;57:825.

    Google Scholar 

  29. Dor J, Itzkowic DJ, Mashiach S, Lunenfeld B, Serr DM. Cumulative conception rates following gonadotropin therapy. Am J Obstet Gynecol 1990;136:102.

    Google Scholar 

  30. Oehninger S, Veeck L, Lazendorf S, Maloney M, Toner J, Muasher S. Intracytoplasmic sperm injection: achievement of high pregnancy rates in couples with severe male factor infertility is dependent primarily upon female and not male factors. Fertil Steril 1995;64:977–81.

    PubMed  CAS  Google Scholar 

  31. Craft I, Al-Shawaf, Lewis P, et al. Analysis of 1071 GIFT procedures: the case for a flexible approach to treatment. Lancet 1988;1:1094–98.

    Article  PubMed  CAS  Google Scholar 

  32. Munne S, Alikani M, Tonkin G, Grifo J, Cohen J. Embryo morphology, developmental rates, and maternal age are correlated with chromosome abnormalities. Fertil Steril 1995;64:382.

    PubMed  CAS  Google Scholar 

  33. Cohen J, Alikani M, Trowbridge J, Rosenwaks Z. Implantation enhancement by selective assisted hatching using zona drilling of human embryos with poor prognosis. Hum Reprod 1992;7:685–91.

    PubMed  CAS  Google Scholar 

  34. Society for Assisted Reproductive Technology. Assisted reproductive technology in the United States, 1991: results for assisted reproductive technology generated from the American Fertility Society registry. Fertil Steril 1993; 59:956–62.

    Google Scholar 

  35. Jacobs SL, Mezger DA, Dodson WC, Haney AF. Effect of age on response to human menopausal gonadotropin stimulation. J Clin Endocrinol Metab 1990; 71:15225–30.

    Article  Google Scholar 

  36. Maroulis GB, Emery M, Mayer J, Yeko TR, Parsons A. Effect of age on uterine and ovarian response and follicular fluid (FF) hormones during gonadotropin (HMG) and GnRH-analogue (GnRHa)-HMG stimulation. Society for Gynecologic Investigation Annual Meeting, March 1992.

    Google Scholar 

  37. Buckler HM, Evans CA, Mamtora H, Burger HG, Anderson DC. Gonadotropin, steroid and inhibin levels in women with incipient ovarian failure during anovulatory and ovulatory rebound cycles. J Clin Endocrinol Metab 1991; 72:116–24.

    Article  PubMed  CAS  Google Scholar 

  38. Hughes EG, Robertson SM, Handelsman DJ, Haywood S, Healy DL, deKreser DM. Inhibin and estradiol responses to ovarian hyperstimulation: effects of age and predictive value for in-vitro fertilization outcome. J Clin Endocrinol Metab 1990;70:358–64.

    Article  PubMed  CAS  Google Scholar 

  39. Scott RD, Toner JP, Muasher SJ. Follicle stimulating hormone levels on cycle day 3 are predictive of in-vitro fertilization outcome. Fertil Steril 1989;51:651.

    PubMed  CAS  Google Scholar 

  40. Toner JP, Scott RD. Chronologic vs. ovarian age: impact of pregnancy among fertile couples. Semin Reprod Endocrinol 1995;31:1.

    Article  Google Scholar 

  41. Scott RT, Leonardi MR, Hoffman GE, et al. A prospective evaluation of clomiphene citrate challenge test screening to the general infertility population. Obstet Gynecol 1993;82:539–44.

    Article  PubMed  CAS  Google Scholar 

  42. Winslow KL, Toner JP, Brezski Rh, Oehninger AC, Acosta AA, Muasher SJ. The gonadotropin-releasing hormone agonist stimulation test: a sensitive predictor of performance in the flare-up in-vitro fertilization cycle. Fertil Steril 1991;56:71–7.

    Google Scholar 

  43. Gonzalez OV, Martinez NL, Rodrigues G, Ancer J. Pattern of vascular aging of the post-menopausal ovary. Ginecol Obstet Mex 1992;60:1–3.

    PubMed  CAS  Google Scholar 

  44. Kurjak A, Kupesic S. Ovarian senescence and its significance on uterine and ovarian perfusion. Fertil Steril 1995;64:353.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Maroulis, G.B. (1997). Changes in Oocyte Number with Age: Effect on Fecundability. In: Lobo, R.A. (eds) Perimenopause. Serono Symposia USA. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2288-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2288-0_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7488-9

  • Online ISBN: 978-1-4612-2288-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics