Skip to main content

Granulosa Cell Competence with Aging

  • Chapter
Perimenopause

Part of the book series: Serono Symposia USA ((SERONOSYMP))

  • 111 Accesses

Abstract

Granulosa cells provide essential metabolic support and participate in intrafollicular communication with their accompanying oocyte. The life cycle of a granulosa cell is composed of periods of proliferation and differentiation followed by quiescence, senescence, or apoptosis. Steroids, glycoproteins, and yet to be discovered proteins are produced by these cells. This chapter examines how changes in these processes may reflect age-related changes in human granulosa cell competence that are accompanied by a decline in female fecundity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Seifer DB, Berlinsky D. The human granulosa cell model — lessons gleaned from assisted reproductive technologies. Assist Reprod Rev 1993;49–55.

    Google Scholar 

  2. Toner JP, Philput CB, Jones GS, Muasher SJ. Basal follicle-stimulating hormone level is a better predictor of in vitro fertilization performance than age. Fertil Steril 1991;55:784–91.

    PubMed  CAS  Google Scholar 

  3. Jacobs SL, Metzger DA, Dodson WC, Haney AF. Effect of age on response to human menopausal gonadotropin stimulation. J Clin Endocrinol Metab 1990;71:1525–30.

    Article  PubMed  CAS  Google Scholar 

  4. Piette C, de Mouzon J, Bachelot A, Spira A. In vitro fertilization: influence of woman’s age on pregnancy rates. Hum Reprod 1990;5:56–9.

    PubMed  CAS  Google Scholar 

  5. Sharma V, Riddle A, Mason BA, Pampiglione J, Campbell S. An analysis of factors influencing the establishment of a clinical pregnancy in an ultrasound-based ambulatory in vitro fertilization program. Fertil Steril 1988;49:468–78.

    PubMed  CAS  Google Scholar 

  6. Carson SL, Dickey RP, Goeial B, et al. Outcome in 242 in vitro fertilization embryo replacement or gamete intrafallopian transfer-induced pregnancies. Fertil Steril 1989;51:644–50.

    Google Scholar 

  7. Craft I, Al-Shawaf T, Lewis P, et al. Analysis of 1071 GIFT procedures — the case for a flexible approach to treatment. Lancet 1988;1:1094–98.

    Article  PubMed  CAS  Google Scholar 

  8. Hughes EG, King C, Wood EC. A prospective study of prognostic factors in in vitro fertilization and embryo transfer. Fertil Steril 1989;51:838–44.

    PubMed  CAS  Google Scholar 

  9. Padilla SL, Garcia JE. Effect of maternal age and number of in vitro fertilization procedures on pregnancy outcome. Fertil Steril 1990;52:270–73.

    Google Scholar 

  10. Penzias AS, Thompson IE, Alper MM, Oskowitz SP, Berger MJ. Successful use of gamete intrafallopian transfer does not reverse the decline in fertility in women over 40 years of age. Obstet Gynecol 1991;77:37–9.

    PubMed  CAS  Google Scholar 

  11. Maroulis GB. Effect of aging on fertility and pregnancy. Semin Reprod 1991;9:165–75.

    Article  Google Scholar 

  12. Hofmann GE, Scott RT Jr, Horowitz GM, Thie J, Navot D. Evaluation of the reproductive performance of women with elevated day 10 progesterone levels during ovarian reserve screening. Fertil Steril 1995;63:979–83.

    PubMed  CAS  Google Scholar 

  13. Richardson SJ, Senikas V, Nelson JF. Follicular depletion during the menopausal transition: evidence for accelerated loss and ultimate exhaustion. J Clin Endocrinol Metab 1987;65:1231–7.

    Article  PubMed  CAS  Google Scholar 

  14. Kenigsberg D, Hodgen GD. Regulation of ovarian function. In Riddick DH, ed. Reproductive physiology in clinical practice. New York: Thieme, 1987:1–21.

    Google Scholar 

  15. Scott RT Jr, Hofmann GE. Prognostic assessment of ovarian reserve. Fertil Steril 1995;63:1–11.

    PubMed  Google Scholar 

  16. Scott RT Jr, Hofmann GE, Oehninger S, Muasher SJ. Intercycle variability of day 3 follicle-stimulatory hormone levels and its effect on stimulation quality in in vitro fertilization. Fertil Steril 1990;54:297–302.

    PubMed  Google Scholar 

  17. Scott RT, Toner JP, Muasher SJ, Oehninger S, Robinson S, Rosenwaks Z. Follicle-stimulating hormone levels on cycle day 3 are predictive of in vitro fertilization outcome. Fertil Steril 1989;51:651–4.

    PubMed  CAS  Google Scholar 

  18. Pearlstone AC, Fournet N, Gambone JC, Pang SC, Buyalos RP. Ovulation induction in women age 40 and older: the importance of basal follicle-stimulating hormone level and chronological age. Fertil Steril 1992;58:674–9.

    PubMed  CAS  Google Scholar 

  19. Sherman BM, West JH, Korenman SG. The menopausal transition: analysis of LH, FSH, estradiol and progesterone concentrations during menstrual cycles of older women. J Clin Endocrinol Metab 1976;42:629–36.

    Article  PubMed  CAS  Google Scholar 

  20. Lenton EA, Sexton L, Lee S, et al. Progressive changes in LH and FSH and LH: FSH ratio on women throughout reproductive life. Maturitas 1988;10:35–43.

    Article  PubMed  CAS  Google Scholar 

  21. Cameron IT, O’Shea FC, Rolland JM, Hughes EG, DeKretser DM, Healy DL. Occult ovarian failure: a syndrome of infertility, regular menses, and elevated follicle stimulating hormone concentrations. J Clin Endocrinol Metab 1988;67:1190–4.

    Article  PubMed  CAS  Google Scholar 

  22. Ying S-Y. Inhibins, activins, and follistatins: gonadal proteins modulating the secretion of follicle-stimulating hormone. Endocr Rev 1988;9:267–93.

    Article  PubMed  CAS  Google Scholar 

  23. Hughes EG, Robertson DM, Handelsman DJ, Hayward S, Healy DL, DeKretser DM. Inhibin and estradiol responses to ovarian hyperstimulation: effects of age and predictive value for in vitro fertilization outcome. J Clin Endocrinol Metab 1990;70:358–64.

    Article  PubMed  CAS  Google Scholar 

  24. Buckler HM, Evans CA, Mamtora H, Burger HG, Anderson DC. Gonadotropin, steroid, and inhibin levels in women with incipient ovarian failure during anovulatory and ovulatory rebound cycles. J Clin Endocrinol Metab 1991;72:116–24.

    Article  PubMed  CAS  Google Scholar 

  25. Navot D, Bergh PA, Williams MA, et al. Poor oocyte quality rather than implantation failure as a cause of age-related decline in female fertility. Lancet 1991;337:1375–7.

    Article  PubMed  CAS  Google Scholar 

  26. Sauer MV, Paulson RJ, Lobo RA. A preliminary report on oocyte donation extending reproductive potential to women over 40. N Engl J Med 1990; 323:1157–60.

    Article  PubMed  CAS  Google Scholar 

  27. Sauer MV, Paulson RJ, Lobo RA. Reversing the natural decline in human fertility: an extended clinical trial of oocyte donation to women of advanced reproductive age. JAMA 1992;268:1275–9.

    Article  PubMed  CAS  Google Scholar 

  28. Sauer MV, Paulson RJ, Lobo RA. Pregnancy after age 50: application of oocyte donation to women after natural menopause. Lancet 1993;341:321–3.

    Article  PubMed  CAS  Google Scholar 

  29. Sauer MV, Miles RA, Dahmoush L, Paulson RJ, Press M, Moyer D. Evaluating the effect of age on endometrial responsiveness to hormone replacement therapy: a histologic ultrasonographic and tissue receptor analysis. J Assist Reprod Genet 1993;10:47–52.

    Article  PubMed  CAS  Google Scholar 

  30. Assisted Reproductive Technology in the United States and Canada. 1993 results generated from the American Society for Reproductive Medicine/Society for Assisted Reproductive Technology Registry. Fertil Steril 1995;64:13–21.

    Google Scholar 

  31. Grifo J, Rosenwaks Z, Cohen J, Munne S. Implantation failure of morphologically normal human embryos is due largely to aneuploidy. Presented at the 50th Annual Meeting of the American Fertility Society, San Antonio, 1994 (Abstract 0–003) p. S2.

    Google Scholar 

  32. Benadiva CA, Munne S, Rosewaks Z. Chromosome 16 aneuploidy increases significantly with maternal age in preimplantation human embryos. Presented at the 51st Annual Meeting of the American Society for Reproductive Medicine, Seattle, 1995 (Abstract 0–003) p. S2.

    Google Scholar 

  33. Keefe DL, Niven-Fairchild T, Powell S, Buradagunta S. Mitochondrial DNA deletions in oocytes and reproductive aging in women. Fertil Steril 1995; 64:577–83.

    PubMed  CAS  Google Scholar 

  34. Eppig JJ, Intercommunication between mammalian oocytes and companion somatic cells. Bioessays 1991;13:569–74.

    Article  PubMed  CAS  Google Scholar 

  35. Terranova PF. Regulation of the granulosa cell: growth factor interactions. Semin Reprod Endocrinol 1991;9:313–20.

    Article  Google Scholar 

  36. Eppig JJ. Mammalian oocyte development. In Hillier SG, ed. Ovarian endocrinology. Oxford: Blackwell Scientific, 1991:107–31.

    Google Scholar 

  37. Schultz RM. Meiotic maturation of mammalian oocytes. In Wasserman P, ed. Elements of mammalian fertilization. Boca Raton: CRC Press, 1991;78–104.

    Google Scholar 

  38. O W-S, Robertson DM, DeKretser DM. Inhibin as an oocyte meiotic inhibitor. Mol Cell Endocrinol 1989;62:307–11.

    Article  PubMed  CAS  Google Scholar 

  39. Vanderhyden BC. Species differences in the regulation of cumulus expansion by an oocyte-seereted factor(s). J Reprod Fertil 1993;98:219–27.

    Article  PubMed  CAS  Google Scholar 

  40. Coskun S, Uzumcu M, Lin YC, Friedman CI, Alak BM. Regulation of cumulus cell steroidogenesis by the porcine oocyte and preliminary characterization of oocyte-produced factor(s). Biol Reprod 1995;53:668–73.

    Article  Google Scholar 

  41. Hsueh AJW, Adashi EY, Jones PBC, Welsh TH. Hormonal regulation of the differentiation of cultured ovarian granulosa cells. Endocr Rev 1984;5:76–127.

    Article  PubMed  CAS  Google Scholar 

  42. McAllister JM, Mason JI, Byrd W, Trant JM, Waterman MR, Simpson ER. Proliferating human granulosa-lutein cells in long term monolayer culture: expression of aromatase, cholesterol side-chain cleavage, and 3 beta-hydroxysteroid dehydrogenase. J Clin Endocrinol Metab 1990;71:26–33.

    Article  PubMed  CAS  Google Scholar 

  43. Yong EL, Baird DT, Yates R, Reichert LE Jr, Hillier SG. Hormonal regulation of the growth and steroidogenic function of human granulosa cells. J Clin Endocrinol Metab 1992;74:842–9.

    Article  PubMed  CAS  Google Scholar 

  44. Scully RE, Cohen RB. Oxidative-enzyme activity in normal and pathologic human ovaries. Obstet Gynecol 1964;24:667–81.

    PubMed  CAS  Google Scholar 

  45. Mattingly RF, Huang WY. Steroidogenesis of the menopausal and postmenopausal ovary. Am J Obstet Gynecol 1969;103:679–93.

    PubMed  CAS  Google Scholar 

  46. Vermeulen A. The hormonal activity of the postmenopausal ovary. J Clin Endocrinol Metab 1976;42:247–53.

    Article  PubMed  CAS  Google Scholar 

  47. Dennefors BL, Janson PO, Hamberger L, Knutson F. Hilus cells from human postmenopausal ovaries: gonadotropin sensitivity, steroid and cyclic AMP production. Acta Obstet Gynecol Scand 1982;61:413–6.

    Article  PubMed  CAS  Google Scholar 

  48. Krasnow J. Advances in understanding ovarian physiology: regulation of steroidogenic enzymes in ovarian follicular differentiation. Semin Reprod Endocrinol 1991;9:283–302.

    Article  Google Scholar 

  49. Steinkampf MP, Mendelson CR, Simpson ER. Regulation by follicle-stimulating hormone of the synthesis of aromatase cytochrome P-450 in human granulosa cells. Mol Endocrinol 1987;1:465–71.

    Article  PubMed  CAS  Google Scholar 

  50. Inkster SE, Brodie AM. Expression of aromatase cytochrome P-450 in pre-menopausal and postmenopausal human ovaries: an immunocytochemical study. J Clin Endocrinol Metab 1991;73:717–26.

    Article  PubMed  CAS  Google Scholar 

  51. Seifer DB, Honig J, Penzias AS, et al. Flow cytometric analysis of deoxyribo-nucleic acid in human granulosa cells as a function of chronological age and ovulation induction regimen. J Clin Endocrinol Metab 1992;75:636–40.

    Article  PubMed  CAS  Google Scholar 

  52. Seifer DB, Charland C, Berlinsky D, Penzias AS, Haning RV Jr, Naftolin F. Proliferative index of human luteinized granulosa cells varies as a function of ovarian reserve. Am J Obstet Gynecol 1993;169:1531–5.

    PubMed  CAS  Google Scholar 

  53. Pellicer A, Marí M, de los Santos MJ, Simón C, Remohí J, Tarín JJ. Effects of aging on the human ovary: the secretion of immunoreactive alpha-inhibin and progesterone. Fertil Steril 1994;61:663–8.

    PubMed  CAS  Google Scholar 

  54. Seifer DB, Gardiner AC, Lambert-Messerlian GM, Schneyer AL. Differential secretion of dimeric inhibin in cultured luteinized granulosa cells as a function of ovarian reserve. J Clin Endocrinol Metab 1996;81:736–9.

    Article  PubMed  CAS  Google Scholar 

  55. Seifer DB, Giudice LC, Dsupin BA, Haning RV Jr, Frishman GN, Burger HG. Follicular fluid IGF-I and IGF-II concentrations vary as a function of day 3 serum FSH. Hum Reprod 1995;10:804–6.

    PubMed  CAS  Google Scholar 

  56. Klein NA, Battaglia DE, Miller PB, Giudice LC, Soules MR. The ovarian follicular fluid environment in reproductive aging: changes in hormones and growth factors. J Soc Gynecol Invest 1995;2:141.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Seifer, D.B. (1997). Granulosa Cell Competence with Aging. In: Lobo, R.A. (eds) Perimenopause. Serono Symposia USA. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2288-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2288-0_11

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7488-9

  • Online ISBN: 978-1-4612-2288-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics