Skip to main content

Abstract

Plants have been used for medicinal purposes for centuries (Larkin 1983). The writings remaining from the ancient civilizations of Sumer, Assyria, Egypt, Greece, China, and Rome describe the use of plants believed to possess medicinal qualities. The first comprehensive list, or Materia Medica, of all known medicinal herbs dates to the days of the Roman Empire (Larkin 1983). Tea, originating in China, is one of the world’s oldest known prepared beverages. In the early years of the twentieth century, many herbals were tested for activity and eliminated as ineffective or replaced by synthetic products. However, during the past 20 years there has been a resurgence of interest in “natural” products such as herbal teas and supplements with medicinal or nonmedicinal purposes. With concerns about the possible ill effects of consuming beverages containing caffeine, health-oriented individuals are turning to herbal teas as alternatives to traditional low calorie, caffeinated beverages such as coffee, cocoa, and tea. The popularity of herbal tea consumption has acquired such dimensions that during 1985 the sales of herbs and herbal teas in health food stores exceeded $190 million in the United States (Tyler 1987). Hundreds of different herbal teas are sold in health food stores as varied mixtures of roots, leaves, seeds, barks, or other parts of shrubs, vines, or trees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ames NB (1983) Dietary carcinogens and anticarcinogens. Science 221:1256–1264.

    Article  PubMed  CAS  Google Scholar 

  • AOAC (1984) Official methods of analysis of the Association of Analytical Chemists. Association of Analytical Chemists, Arlington, VA, p 489.

    Google Scholar 

  • Benner MH, Howard JL (1973) Anaphylactic reaction to chamomile tea. J Allergy Clin Immunol 52(5):307–308.

    Article  PubMed  CAS  Google Scholar 

  • Betz JM, Eppley RM, Taylor WC, and Andrzejewski D (1994) Determination of pyrrolizidine alkaloids in commercial comfrey products (Symphytum sp.). J Pharm Sci 83:649–653.

    Article  PubMed  CAS  Google Scholar 

  • Borchert P, Miller EC, Miller JA (1971) 1′-Hydroxysafrole, a new metabolite and 1′-acetoxysafrole, a reactive intermediate. Proc Am Assoc Cancer Res 12:34.

    Google Scholar 

  • Borchert P, Wislocki PG, Miller JA, Miller EC (1973) The metabolism of the naturally occurring hepatocarcinogen safrole to 1′ -hydroxysafrole and the electrophilic reactivity of 1′-acetoxysafrole. Cancer Res 33:575–530.

    PubMed  CAS  Google Scholar 

  • Bras G, Jelliffe DB, Stuart KL (1954) Veno-occlusive disease of the liver with nonportal type of cirrhosis occurring in Jamaica. Arch Pathol 57:285–300.

    CAS  Google Scholar 

  • Bras G, Hill KR (1956) Veno-occlusive disease of the liver — essential pathology. Lancet 2:161–163.

    Article  Google Scholar 

  • Bras G, Berry DM, Gyorgy P (1957) Plants as etiological factor in veno-occlusive disease of the liver. Lancet 2:960–962.

    Article  Google Scholar 

  • Brown KS (1984) Chemical ecology of dehydropyrrolizidine alkaloids in adult Ithomiinae (Lepidoptera: Nymphalidae) Rev Bras Biol 44:435–440.

    CAS  Google Scholar 

  • Bruggeman IM, Van der Hoeven JCM (1985) Induction of SCEs by some pyrrolizidine alkaloids in V79 Chinese hamster cells co-cultured with chick embryo hepatocytes. Mutat Res 142:209–212.

    Article  PubMed  CAS  Google Scholar 

  • Butler GL, Riedl DJ, Lebryk DG, Blytt H J (1984) Interaction of proteins with sorghum tannin: mechanism, specificity and significance. J Am Oil Chem Soc 61:916–920.

    Article  CAS  Google Scholar 

  • Candrian U, Luthy J, Graf U, Schlatter C (1984) Mutagenic activity of the pyrrolidine alkaloids seneciphylline and senkirkine in Drosophila and their transfer into rat milk. Food Chem Toxicol 22:223–225.

    Article  PubMed  CAS  Google Scholar 

  • Centers for Disease Control (1977) Poisoning associated with herbal teas: Arizona, Washington. Morbid Mortal Wkly Rep 267:10–12.

    Google Scholar 

  • Chizzola R (1994) Rapid sample preparation technique for the determination of pyrrolizidine alkaloids in plant extracts. J Chromatogr 668:427–433.

    Article  CAS  Google Scholar 

  • Clark AM (1959) Mutagenic activity of the alkaloid heliotrine in Drosophila. Nature (London) 183:731–732.

    Article  CAS  Google Scholar 

  • Cousins BW, Tanksley TD, Knabe DA, Zebrowsila T (1981) Nutrient digestibility and performance of pigs fed sorghums varying in tannin concentration. J Anim Sci 53:1524.

    PubMed  CAS  Google Scholar 

  • Culvenor CCJ (1985) Pyrrolizidine alkaloids: some aspects of the Australian involvement. Trends Pharmacol Sci 6:18–24.

    Article  CAS  Google Scholar 

  • Culvenor CCJ, Edgar JA, Smith LW (1986) Heliotropium lasiocarpum Fisch and Mey identified as cause of veno-occlusive disease due to a herbal tea. Lancet 325: 978.

    Article  Google Scholar 

  • Deschner EE, Ruperto J, Wong G, Newmark HL (1991) Quercithin and rutin as inhibitors of azoxymethanol-induced colonic neoplasia. Carcinogenesis (Oxford) 7:1193–1196.

    Article  Google Scholar 

  • De Whalley CV, Rankin SM, Hoult JRS, Jessup W, Leake DS (1990) Flavonoids inhibit the oxidative modification of low density lipoproteins by macrophages. Biochem Pharmacol 42:1743–1750.

    Google Scholar 

  • Disler PB, Lynch SR, Charlton RW, Torrance JD, Bothwell TH, Walker RB, Mayet F (1975) The effects of tea on iron absorption. Gut 16:193–200.

    Article  PubMed  CAS  Google Scholar 

  • Dorange JL, Delaforge M, Janiaud P, Padieu P (1977) Pouvoir mutagene de metabolites de la voie epoxydediol du safrol et d’analogues. Etude sur Salmonella typhimurium. C R Seanc Soc Biol Fil 171:1041.

    CAS  Google Scholar 

  • Dunham LJ (1968) A geographic study of the relationship between oral cancer and plants. Cancer Res 28:2369–2371.

    PubMed  CAS  Google Scholar 

  • Epstein SS, Fujii K, Andrea J, Mantel N (1970) Carcinogenicity testing of selected food additives by parenteral administration to infant Swiss mice. Toxicol Appl Pharmacol 16:321–334.

    Article  PubMed  CAS  Google Scholar 

  • Federal Register (1960) Refusal to extend effective date of statute for certain specified food additives. Fed Reg 25:12412 (Dec. 3).

    Google Scholar 

  • Federal Register (1974) Substances prohibited from use in food. Fed Reg 39:26748–26749, 34172–34173.

    Google Scholar 

  • Fox DW, Hart MC, Begerson PS, Jarret PB, Stillman AE, Huxtable RJ (1978) Pyrrolizidine (Senecio) intoxication mimicking Reye syndrome. J Pediatr 93: 980–982.

    Article  PubMed  CAS  Google Scholar 

  • Furmanowa M, Guzewska J, Beldowska B (1983) Mutagenic effects of aqueous extracts of Symphytom officinale L. and its alkaloid fractions. J Appl Toxicol 3: 127–130.

    Article  PubMed  CAS  Google Scholar 

  • Green RC, Christie CS (1961) Malformations in fetal rats induced by pyrrolizidine alkaloid, heliotrine. Br J Exp Pathol 42:369–378.

    PubMed  CAS  Google Scholar 

  • Green MH, Muriel WJ (1975) Use of repair-deficient strains of Escherichia coli and liver microsomes to detect and characterize DNA damage caused by the pyrrolizidine alkaloids heliotrine and monocrotaline. Mutat Res 28:331–336.

    Article  PubMed  CAS  Google Scholar 

  • Hagan EC, Jenner PM, Jones WI, Fitzhugh OG, Long EL, Brouwer JG, Webb WK (1965) Toxic properties of compounds related to safrole. Toxicol Appl Pharmacol 7:18.

    Article  PubMed  CAS  Google Scholar 

  • Hartmann T, and Zimmer M (1985) Organ-specific distribution and accumulation of pyrrolizidine alkaloids during the life history of two annual Senecio species. J Plant Physiol 122:67–80.

    Google Scholar 

  • Hartmann T, Witte J (1994) In: Pollitier SW (ed) Alkaloids: Chemical and Biological Perspectives. Pergamon Press, New York, p 155.

    Google Scholar 

  • Hertog MGL, Hollman PCH, Van de Putte B (1993) Content of potentially anticarcinogenic flavonoids of tea infusions, wines, and fruit juices. J Agric Food Chem 41:1242–1246.

    Article  CAS  Google Scholar 

  • Hirono I, Mori H, Culvenor CCJ (1976) Carcinogenic activity of coltsfoot, Tussilago farfara L. Gann Monogr Cancer Res 67:125–129.

    CAS  Google Scholar 

  • Hirono I, Mori H, Yamada K, Hirata Y, Haga M, Tatematsu H, Kanie S (1977) Carcinogenic activity of petasitenine, a new pyrrolizidine alkaloid isolated from Petasites japonicus Maxim. J Natl Cancer Inst 58:1155–1156.

    PubMed  CAS  Google Scholar 

  • Hirono I, Mori H, Haga M (1978) Carcinogenic activity of Symphytum officinale. J Natl Cancer Inst 61:865–869.

    PubMed  CAS  Google Scholar 

  • Hirono I, Mori H, Haga M, Fujii M, Yamada K, Takanashi H, Uchida E, Hosaka S, Ueno I, Matsushima I, Umezava K, Shirai A (1979) Edible plant containing carcinogenic pyrrolizidine alkaloids in Japan. In: Miller BC, et al. (eds) Naturally Occurring Carcinogens, Mutagens, and Modulators of Carcinogenesis. University Park Press, Baltimore, MD, pp 79–87.

    Google Scholar 

  • Hirono I (1981) Natural carcinogenic products of plant origin. CRC Crit Rev Toxicol 9:235–277.

    Article  Google Scholar 

  • Hirono I, Ueno I, Aiso S, Yamaji T, Haga M (1983) Carcinogenic activity of Farfagium japonicum and Senecio cannabifolius. Cancer Lett 20:191–198.

    Article  PubMed  CAS  Google Scholar 

  • Hodgson E, Philpot RM (1974) Interaction of methylenedioxyphenyl (1,3-benzidioxole) compounds with enzymes and their effect on mammals. Drug Metab Rev 3:231.

    Article  PubMed  CAS  Google Scholar 

  • Hoveland CS (1993) Importance and economic significance of the Acremonium endocytes to performance of animals and grass plant. Agric Ecosyst Environ 44:3.

    Article  Google Scholar 

  • Huxtable RJ (1980a) Herbal teas and toxins: novel aspects of pyrrolizidine poisoning in the United States. Perspect Biol Med 24:2–14.

    Google Scholar 

  • Huxtable RJ (1980b) Problems with pyrrolidines. Trends Pharmacol Sci 1:299–303.

    Article  CAS  Google Scholar 

  • Huxtable RJ, Cooper R, Yan CC (1996) Pyrrolizidine alkaloids: relationships between structure, metabolism and toxicity. Presented at 13th Rocky Mountain regional meeting of the American Chemical Society, 9–12 June, Denver, CO (abstr. 77).

    Google Scholar 

  • Ioannides C, Delaforge M, Park DV (1981) Safrole: its metabolism, carcinogenicity and interactions with cytochrome P-450. Food Cosmet Toxicol 19:657–666.

    Article  PubMed  CAS  Google Scholar 

  • Jaffe H, Fujii K, Sengupta M (1968) In vivo inhibition of mouse liver microsomal hydroxylating systems by methylene dioxyphenyl insecticidal synergists and related compounds. Life Sci 7(1):1051–1062.

    Article  PubMed  CAS  Google Scholar 

  • Janiaud P, Delaforge M, Levi P, Maume BF, Padieu P (1977) Métabolisme d’un hepatocancerogene naturel, le safrol. Etude chez le rat et dans des cultures de cellules hépatiques de rat, de Taction d’effecteurs sur plusieurs voies metaboliques et des formes de transport. Coli Int CNRS 286:431.

    Google Scholar 

  • Johnson A, Molyneux RJ, Merrill GB (1985) Chemistry of toxic range plants: variation in pyrrolizidine alkaloid content of Senecio, Amsinckia, and Crotalaria species. J Agric Food Chem 33:50–55.

    Article  CAS  Google Scholar 

  • Kapadia GJ, Paul BD, Chung EB, Ghosh B, Pradham SN (1976) Carcinogenicity of Camellia sinensis (tea) and some tannin-containing folk medicinal herbs administered subcutaneously in rats. J Natl Cancer Inst 57(l):207–209.

    PubMed  CAS  Google Scholar 

  • Kingsbury JM (1983) The evolutionary and ecological significance of plant toxins. In: Keeler RF, Tu TA (eds) Handbook of Natural Toxins. Plant and Fungal Toxins, Vol. 1. Marcel Dekker, New York, pp 675–706.

    Google Scholar 

  • Kirby KS (1960) Induction of tumors by tannin extracts. Br J Cancer 14:147.

    Article  PubMed  CAS  Google Scholar 

  • Korpassy B, Mosonyi M (1950) Liver tumors induced in rats by prolonged subcutaneous administration of tannic acid solutions. Br J Cancer 4:411–420.

    Article  PubMed  CAS  Google Scholar 

  • Korpassy B (1961) Tannins as hepatic carcinogens. Prog Exp Tumor Res 2:245–290.

    PubMed  CAS  Google Scholar 

  • Kumana CR, Lin H J, Wu PC, Todd D (1983) Hepatic veno-occlusive disease due to toxic alkaloid in herbal tea. Lancet 2:1360–1361.

    Article  PubMed  CAS  Google Scholar 

  • Larkin T (1983) Herbs are more toxic than magical. FDA Consumer 17:5–10.

    Google Scholar 

  • Liddell RJ, Logie CG (1993) 7-Angelyl-l-methylenepyrrolizidines from Senecio chrysocoma. Phytochemistry 34(4):1198–1199.

    Article  CAS  Google Scholar 

  • Long EL, Nelson AA, Fitzhugh OG, Hensen WH (1963) Liver tumors produced in rats by feeding safrole. Arch Pathol 75:595.

    CAS  Google Scholar 

  • Manteiga R (1991) Toxic and mutagenic potentials of herbal teas. M.S. thesis, University of Arizona, Tucson.

    Google Scholar 

  • Maron DM, Ames BN (1983) Revised methods for the Salmonella mutagenicity test. Mutat Res 113:173–215.

    PubMed  CAS  Google Scholar 

  • Mattocks AR (1968) Toxicity of pyrrolizidine alkaloids. Nature 217:723–728.

    Article  PubMed  CAS  Google Scholar 

  • Mattocks AR (1969) Dihydropyrrolizidine derivatives from unsaturated pyrrolizidine alkaloids. J Chem Soc Sect C Org Chem 19:2698–2700.

    Article  CAS  Google Scholar 

  • Mattocks AR (1970) Role of acid moieties in the toxic actions of pyrrolizidine alkaloids on liver and lung. Nature 228:174–175.

    Article  PubMed  CAS  Google Scholar 

  • Mattocks AR, Bird I (1983) Pyrrolic and N-oxide metabolites formed from pyrrolizidine alkaloids by hepatic microsomes in vitro: relevance to in vivo hepatotoxicity. Chem Biol Int 43:209–222.

    Article  CAS  Google Scholar 

  • Mattocks AR, Driver HE (1987) Toxic actions of senaetnine, a new pyrrolizidinetype alkaloid, in rats. Toxicol Lett 38:315–319.

    Article  PubMed  CAS  Google Scholar 

  • McGee JO, Patrick RS, Wood CB, Blumgart LH (1976) A case of veno-occlusive disease of the liver in Britain associated with herbal tea consumption. J Clin Pathol 29:788–794.

    Article  PubMed  CAS  Google Scholar 

  • McLean EK (1970) The toxic actions of pyrrolizidine (Senecio) alkaloids. Pharmacol Rev 22:429–482.

    PubMed  CAS  Google Scholar 

  • Merino FC, Amesty C, Grand R (1979) Immunological studies in a Venezuelan high gastric cancer risk population. Cancer Detect Prev 2(3):373–389.

    Google Scholar 

  • Middleton E, Kandaswami C (1992) Effects of flavonoids on immune and inflammatory cell functions. Biochem Pharmacol 43:1167–1179.

    Article  PubMed  CAS  Google Scholar 

  • Mirochnick MF (1938) Clinical course and etiopathogenesis of toxic hepatites with ascites. In: Medical Institute, Scientific Papers of the Second Therapeutic Clinic, Vol. I. Medical Literature Publishers, Tashkent.

    Google Scholar 

  • Mohabbat O, Srivastava RN, Younos MS, Sediq GG, Menzad AA, Aram GN (1976) An outbreak of hepatic veno-occlusive disease in Northwestern Afghanistan. Lancet 2:269–271.

    Article  PubMed  CAS  Google Scholar 

  • Molyneux RJ, Roitman JN (1980) Specific detection of pyrrolizidine alkaloids on thin-layer chromatograms. J Chromatogr 195:412–415.

    Article  CAS  Google Scholar 

  • Morton JF (1970) Tentative correlation of plant usage and esophageal cancer zones. Econ Bot: 217–226.

    Google Scholar 

  • Morton JF (1972) Further associations of plant tannins and human cancer. Q J Crude Drug Res 12:1829–1840.

    Google Scholar 

  • Morton JF (1973) Plant products and occupational materials ingested by esophageal cancer victims in South Carolina. Q J Crude Drug Res 13(l):2005–2022.

    Google Scholar 

  • Morton JF (1980) Search for carcinogenic principles. In: Swain T, Kleiman R (eds) Recent Advances in Phytochemistry, Vol. 43. The Resource Potential in Phytochemistry. Plenum Press, New York, pp 53–73.

    Google Scholar 

  • Morton JF (1986) The potential carcinogenicity of herbal tea. Environmental carcinogens review. J Environ Sci Health 2:203–223.

    Google Scholar 

  • Mossoba MM, Lin HS, Anderzejeweski D, Sphon JA (1994) Application of gas chromatography/matrix isolation/Fourier transform infrared spectroscopy to the identification of pyrrolizidine alkaloids from comfrey root (Symphytum officinale L). J Assoc Anal Chem Int 77(5): 1167–1174.

    CAS  Google Scholar 

  • Nagre-Salvagyre A, Salvagyre R (1992) Quercithin prevents the cytotoxicity of oxidized low density lipoproteins by macrophages. Free Radical Biol Med 112:101–106.

    Article  Google Scholar 

  • O’Gara RW, Lee C, Morton JF (1971) Carcinogenicity of extracts of selected plants from Curacao after oral and subcutaneous administration to rodents. J Natl Cancer Inst 46:1131–1137.

    PubMed  Google Scholar 

  • O’Gara RW, Lee C, Morton JF, Kapadia GJ, Dunham LJ (1974) Sarcoma induced in rats by extract of plant and by fractionated extracts of Krameria ixina. J Natl Cancer Inst 52(2):443–448.

    Google Scholar 

  • Peele JD, Oswald EO (1978) Metabolism of the proximate carcinogen 1’hydroxysafrole and the isomer 3 ‘-hydroxyisosafrole. Bull Environ Contam Toxicol 19:396.

    Article  PubMed  CAS  Google Scholar 

  • Peterson JE, Jago MV (1980) Comparison of the toxic effects of dehydroheliotridine and heliotrine in pregnant rats and their embryos. J Pathol 131:339–355.

    Article  PubMed  CAS  Google Scholar 

  • Peterson JE, Culvenor CCJ (1983) Plant and fungal toxins. In: Keeler RF, Tu AT (eds) Handbook of Natural Toxins, Vol. 1. Marcel Dekker, New York, pp 637–681.

    Google Scholar 

  • Porter JK (1994) Analysis of endophyte toxins: fescue and other grasses toxic to livestock. J Anim Sci 73(3):871–880.

    Google Scholar 

  • Pradhan SN, Chung EB, Ghosh B, Paul BD, Kapadia GJ (1974) Potential carcinogens I. Carcinogenicity of some plant extracts and their tannin-containing fractions in rats. J Natl Cancer Inst 52(5): 1579–1582.

    PubMed  CAS  Google Scholar 

  • Ridker PM, Ohkuma S, Mcdermott WV, Trey C, Huxtable R (1985) Hepatic venocclusive disease associated with the consumption of pyrrolizidine-containing daily supplements. Gastroenterology 88:1050–1054.

    PubMed  CAS  Google Scholar 

  • Rostagno HW, Featherson WR, Rogler JC (1973) Studies on the nutritional value of sorghum grains with varying tannin contents for chicks. Poult Sci 52:765–772.

    CAS  Google Scholar 

  • Roulet M, Laurini M, Calame A (1988) Hepatic veno-occlusive disease in newborn infant of a woman drinking herbal tea. J Pediatr 112:433–436.

    Article  PubMed  CAS  Google Scholar 

  • Schneider D, Boppre M, Zweig J, Horsley SB, Bell TW, Meinwald J, Hansen K, Diehl EW (1982) Scent organ development in Creatonotos moths: regulation by pyrrolizidine alkaloids. Science 215:1264–1265.

    Article  PubMed  CAS  Google Scholar 

  • Schoenberg BS, Bailar JC, Fraumeni JF (1971) Certain mortality patterns of esophageal cancer in the United States. J Natl Cancer Inst 46:63–73.

    PubMed  CAS  Google Scholar 

  • Schoental R, Head MA, Peacock PR (1954) Senecio alkaloids: primary liver tumors in rats as a result of treatment with (1) mixtures of alkaloids from S. jacobaea Lin., (2) retrorsine, (3) isatidine. Br J Cancer 8:458–465.

    Article  PubMed  CAS  Google Scholar 

  • Schoental R (1968) Toxicology and carcinogenic action of pyrrolizidine alkaloids. Cancer Res 28:2237–2246.

    PubMed  CAS  Google Scholar 

  • Segelman AB, Segelman FP, Karliner J, Duane RF (1976) Sassafras and herb tea: potential health hazards. J Am Med Assoc 236:477.

    Article  CAS  Google Scholar 

  • Segi M (1975) Tea-gruel as a possible factor for cancer of the esophagus. Gann 66: 199–202.

    PubMed  CAS  Google Scholar 

  • Selzer G, Parker RGF (1951) Senecio poisoning exhibiting as Chiari’s syndrome: a report of 12 cases. Am J Pathol 27:885–907.

    PubMed  CAS  Google Scholar 

  • Siegel RK (1976) Herbal intoxication. J Am Med Assoc 236:473–476.

    Article  CAS  Google Scholar 

  • Singleton VL (1981) Naturally occurring food toxicants: phenolic substances of plant origin common in foods. Adv Food Res 27:149–242.

    Article  PubMed  CAS  Google Scholar 

  • Smith LW, Culvenor CCJ (1981) Plant sources of hepatotoxic pyrrolizidine alkaloids. J Nat Prod (Lloydia) 44:129–152.

    Article  CAS  Google Scholar 

  • Stelljes ME, Kelly RB, Molyneux RJ, Seiber JN (1991) GC-MS determination of pyrrolizidine alkaloids in four Senecio species. J Nat Prod (Lloydia) 54(3):759–773.

    Article  CAS  Google Scholar 

  • Street HE, Cockburn W (1972) Secondary plant products. In: Plant Metabolism. Pergamon Press, London, pp 186–211.

    Google Scholar 

  • Stuart KL, Bras G (1957) Veno-occlusive disease of the liver. Q J Med 26:291–315.

    PubMed  CAS  Google Scholar 

  • Swanson AB, Chambliss DD, Bolmquist JC, Miller EC, Miller JA (1979) The mutagenicities of safrole, estragole, eugenol, trans-anethole and some of their known or possible metabolites for Salmonella typhimurium mutants. Mutat Res 60:143.

    PubMed  CAS  Google Scholar 

  • Swick RA (1984) Hepatic metabolism and bioactivation of mycotoxins and plant toxins. J Anim Sci 58(4): 1017–1027.

    PubMed  CAS  Google Scholar 

  • Tandon BN, Tandon HD, Tandon RK, Narendranathan M, Joshi YK (1976) Epidemie of veno-occlusive disease in Central India. Lancet 2:271–272.

    Article  PubMed  CAS  Google Scholar 

  • Taylor JM, Jenner PM, Jones WI (1964) A comparison of the toxicity of some allyl, propenyl and propyl compounds in the rat. Toxicol Appl Pharmacol 6:378.

    Article  PubMed  CAS  Google Scholar 

  • Tyler VE (1987) Comfrey. In: The Honest Herbal. George F. Stickley, Philadelphia, pp 77–80.

    Google Scholar 

  • Van Dam NM, Witte L, Theuring C, Hartmann T (1995) Distribution, biosynthesis and turnover of pyrrolizidine alkaloids in Cynoglossum officinale. Phytochemistry (Oxford) 39(2):287–292.

    Article  Google Scholar 

  • Volimer J J, Steiner NC, Larsen GY, Muirhead KM (1987) Pyrrolizidine alkaloids: testing for toxic constituents of comfrey. J Chem Educ 64:1027–1030.

    Article  Google Scholar 

  • Wei H, Tye L, Bresmik E, Birt DF (1990) Inhibitory effect of apigenin, a plant flavonoid, on epidermal ornilthine decarboxylase and skin tumor promotion in mice. Cancer Res 50:499–502.

    PubMed  CAS  Google Scholar 

  • Weintraub S (1960) Stramonium poisoning. Postgrad Med 27:364–371.

    Google Scholar 

  • Were OA, Benn M (1991) Pyrrolizidine alkaloids from Senecio hadiensis. J Nat Prod (Lloydia) 54(2):491–499.

    Article  CAS  Google Scholar 

  • White RD, Krumperman PH, Cheeke PR, Buhler DR (1983) An evaluation of acetone extracts from six plants in the Ames mutagenicity test. Toxicol Lett 15: 25–31.

    Article  PubMed  CAS  Google Scholar 

  • WHO Task Group on Pyrrolizidine Alkaloids (1988) Pyrrolizidine alkaloids. In: Environmental Health Criteria 80. World Health Organization, Geneva.

    Google Scholar 

  • Williams GM, Weisburg JH (1986) Chemical carcinogens. In:Klaassen CD, Amdur MO, Doull J (eds) Casarett and Doull’s Toxicology. The Basic Science of Poisons, 3rd ed. McMillan, New York, p 128.

    Google Scholar 

  • Wislocki PG, Borchert P, Miller JA, Miller EC (1976) The metabolic activation of the carcinogen 1′ -hydroxysafrole in vivo and in vitro and the electrophilic reactivities of possible ultimate carcinogens. Cancer Res 36:1686.

    PubMed  CAS  Google Scholar 

  • Yamanaka H, Nagao M, Sugimura T, Furuya T, Shirai A, Matsushima T (1979) Mutagenicity of pyrrolizidine alkaloids in the Salmonella/mammalian microsome test. Mutat Res 68:211–216.

    Article  PubMed  CAS  Google Scholar 

  • Yen GC, Chen HY (1994) Comparison of antimutagenic effect of various tea extracts (green, oolong, pouchong, and black tea). J Food Prot 57(l):54–58.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag

About this chapter

Cite this chapter

Manteiga, R., Park, D.L., Ali, S.S. (1997). Risks Associated with Consumption of Herbal Teas. In: Ware, G.W. (eds) Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, vol 150. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2278-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2278-1_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7485-8

  • Online ISBN: 978-1-4612-2278-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics