Skip to main content

Effects of Acidic Deposition on Soil Invertebrates and Microorganisms

  • Chapter

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 148))

Abstract

The first observations of the detrimental effects of atmospheric pollution, including acidic deposition, on plants and other organisms were made in Europe more than 300 yr ago. However, scientific research into these effects did not begin until 1852, when Robert Smith, an English chemist, described the rain chemistry in the vicinity of Manchester, England. This study and other work that contributed to our understanding of the historical development of scientific knowledge and public concern over acidifying compounds in precipitation have been reviewed by Cowling (1982).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aber JD, Hendrey GR, Botkin DB, Francis AJ, Melillo JM (1982) Water Air Soil Pollut 18:405.

    Article  CAS  Google Scholar 

  • Abrahamsen G (1970) Forest fertilization and the soil fauna. Tidsskr Skogbruk 78:296–303.

    Google Scholar 

  • Abrahamsen G (1972a) Ecological study of Enchytraeidae (Oligochaeta) in Norwegian coniferous forest soils. Pedobiologia 12:26–82.

    Google Scholar 

  • Abrahamsen G (1972b) Ecological study of Lumbricidae (Oligochaeta) in Norwegian coniferous forest soils. Pedobiologia 12:267–281.

    Google Scholar 

  • Abrahamsen G, Bjor K, Teigen O (1976) Field experiments with simulated acid rain in forest ecosystems. FR 4/76. SNSF, Olso-As, Norway.

    Google Scholar 

  • Abrahamsen G, Hovland J, Hågvar S (1980) Effects of artificial acid rain and liming on soil organisms and the decomposition of organic matter. In: Hutchinson TC, Havas M (ed) Effects of Acid Precipitation on Terrestrial Ecosystems. Plenum Press, New York, pp 341–362.

    Google Scholar 

  • Abrahamsen G (1983) Effects of lime and artificial acid rain on the enchytraeid (Oligochaeta) fauna in coniferous forest. Holarct Ecol 47:787–803.

    Google Scholar 

  • Adams JA (1986) Identification of heterotrophic nitrification in strongly acidic larch humus. Soil Biol Biochem 18:339–341.

    Article  CAS  Google Scholar 

  • Adams MB, O’Neill EG (1991) Effects of ozone and acidic deposition on carbon allocation and mycorrhizal colonization of Pinus taeda L. seedlings. For Sci 37: 5–16.

    Google Scholar 

  • Aerts R, van Logtestijn R, van Staalduinen M, Toet S (1995) Nitrogen supply effects on productivity and potential leaf litter decay of Carex species from peatlands differing in nutrient limitation. Oecologia 104:447–453.

    Article  Google Scholar 

  • Agarwal AS, Singh BR, Kanehiro Y (1971) Ionic effects of salt on mineral release in an allophanic soil. Soil Sci Soc Am Proc 35:454–457.

    Article  CAS  Google Scholar 

  • Aguilar G, Trejo BA, Garcia JM, Huitrón C (1991) Influence of pH on endo- and exo-pectinase production by Aspergillus sp. CH-Y-1043. Can J Microbiol 37: 912–917.

    Article  CAS  Google Scholar 

  • Alexander M (1977) Introduction to Soil Microbiology. Wiley, London.

    Google Scholar 

  • Alexander M (1980a) Effects of acidity on microorganisms and microbial processes in soil. In: Hutchinson TC, Havas M (eds) Effects of Acid Precipitation on Terrestrial Ecosystems. Plenum Press, New York, pp 363–374.

    Google Scholar 

  • Alexander M (1980b) Effects of acid precipitation on biochemical activities in soil. In: Drabloes D, Tollan A (eds) Ecological Impact of Acid Precipitation. Proceedings of an International Conference. SNSF, Oslo, Norway.

    Google Scholar 

  • Ammer S, Makeschin F (1994) Auswirkungen experimenteller saurer Beregnung und Kalkung auf die Regenwurmfauna (Lunbricidae, Oligochaeta) und die Humusform in einem Fichtenaltbestand (Höglwaldexperiment). Forstwiss Centralbl (Hamb) 13:70–85.

    Article  Google Scholar 

  • Andersson FT, Fagerstrom T, Nilsson SI (1980) Forest ecosystem responses to acid deposition-hydrogen ion budget and nitrogen/tree growth model approaches. In: Hutchinson TC, Havas M (eds) Effects of Acid Precipitation on Terrestrial Ecosystems. Plenum Press, New York, pp 319–334.

    Google Scholar 

  • Andersson S, Söderström B (1995) Effects of lime (CaCO3) on ectomycorrhizal colonization of Picea abies (L.) Karst. seedlings planted in a spruce forest. Scand J For Res 10:149–154.

    Article  Google Scholar 

  • Anonymous (1988) Luchtkwaliteit, jaarverslag 1987. Rapp. 228703002. RIVM, Bithoven.

    Google Scholar 

  • Antibus RK, Linkins AE III (1992) Effects of liming a red pine forest on mycorrhizal numbers and mycorrhizal and soil acid activities. Soil Biol Biochem 24:479–487.

    Article  Google Scholar 

  • Armentano T, Loucks O (1990) Spatial patterns of S and N deposition in the midwestern hardwoods region. In: Loucks OL (ed) Air Pollutants and Forest Response: The Ohio Corridor Study. Year-4 Annual Report. Miami University, Holcomb Research Institute, Oxford, OH, pp 54–84.

    Google Scholar 

  • Arnebrant K, Bääth E, Soederstroem B (1990) Changes in micro fungal community structure after fertilization of Scots pine forest soil with ammonium nitrate or urea. Soil Biol Biochem 22:309–312.

    Article  Google Scholar 

  • Artemjeva TI, Gatilova FG (1975) Soil microfauna changes under the influence of various fertilizers. In: Vanek J (ed) Progress in Soil Zoology. Academia, Prague, pp 463–468.

    Google Scholar 

  • Ashraf M (1969) Studies on the biology of Collembola. Rev Ecol Biol Soil 6:337–347.

    Google Scholar 

  • Axelsson B, Lohm U, Lundkvist H, Persson T, Skoglund J, Wiren A (1973) Effects of nitrogen fertilization on the abundance of soil fauna populations in a Scots pine stand. Research Notes 14. Institute Växtekologi, Marklära.

    Google Scholar 

  • Bääth E, Lohm U, Lundgren B, Rosswall T, Soderstrom B, Sohlenius B, Wiren A (1978) The effect of nitrogen and carbon supply on the development of soil organism populations and pine seedlings: a microcosm experiment. Oikos 31: 153–163.

    Article  Google Scholar 

  • Bääth E, Lundgren B, Soderstrom B (1979) Effects of artificial acid rain on microbial activity and biomass. Bull Environ Contam Toxicol 23:737–740.

    Article  PubMed  Google Scholar 

  • Bääth E, Berg B, Lohm U, Lundgren B, Lundkvist H, Rosswall T, Soderstrom B, Wiren A (1980) Effects of experimental acidification and liming on soil organisms and decomposition in a Scots pine forest. Pedobiologia 20:85–100.

    Google Scholar 

  • Bääth E, Lundgren B, Soderstrom B (1984) Fungal populations in podzolic soils experimentally acidified to simulate acid rain. Microb Ecol 10:197–203.

    Article  Google Scholar 

  • Bääth E, Arnebrant K (1994) Growth rate and response of bacterial communities to pH in limed and ash-treated forest soils. Soil Biol Biochem 26:995–1001.

    Article  Google Scholar 

  • Babich H, Stotzky G (1978) Atmospheric sulfur compounds and microbes. Environ Res 15:513–531.

    Article  PubMed  CAS  Google Scholar 

  • Babich H, Stotzky G (1980) Environmental factors that influence the toxicity of heavy metals and gaseous pollutants to microorganisms. Crit Rev Microbiol 8:99–145.

    Article  PubMed  CAS  Google Scholar 

  • Badalucco L, Greco S, Dell’Orco S, Nannipieri P (1992) Effects of liming on some chemical, biochemical, and microbiological properties of acid soils under spruce (Picea abies L.). Biol Fertil Soils 14:76–83.

    Article  CAS  Google Scholar 

  • Baker EW, Wharton GW (1952) An Introduction to Acarology. Macmillan, New York.

    Google Scholar 

  • Bassus W (1960) Die Nematodenfauna des Fichtenrohhumus unter dem Einflub der Kalkdungung. Nematologica 5:86–91.

    Article  Google Scholar 

  • Bassus W (1967) Der Einflub von Meliorations und Dungungsmassnahmen auf die Nematodenfauna verschiedener Waldenboden. Pedobiologia 7:280–295.

    Google Scholar 

  • Behan VM, Hill S, Kevan DKM (1978) Effects of nitrogen fertilizers, as urea, on Acarina and other arthropods in Quebec black spruce humus. Pedobiologia 18:249–263.

    Google Scholar 

  • Berg B (1986a) The influence of experimental acidification on needle litter decomposition in a Picea abies L. forest. Scand J For Res 1:317–322.

    Article  Google Scholar 

  • Berg B (1986b) The influence of experimental acidification on nutrient release and decomposition rates of needle and root litter in the forest floor. For Ecol Manage 15:195–213.

    Article  Google Scholar 

  • Berger H, Foissner W, Adam H (1986) Field experiments on the effects of fertilizers and lime on the soil microfauna of an alpine pasture. Pedobiologia 29:261–272.

    Google Scholar 

  • Bewley RJ, Stotzky G (1983a) Simulated acid rain (H2SO4) and microbial activity in soil. Soil Biol Biochem 15:425–429.

    Article  CAS  Google Scholar 

  • Bewley RJ, Stotzky G (1983b) Anionic constituents of acid rain and microbial activity in soil. Soil Biol Biochem 15:431–437.

    Article  CAS  Google Scholar 

  • Bewley RJ, Parkinson D (1984) Effects of sulphur dioxide pollution on forest soil microorganisms. Can J Microbiol 30:179–185.

    Article  CAS  Google Scholar 

  • Bewley RJ, Stotzky G (1984) Degradation of vanillin in soil-clay mixtures treated with simulated acid rain. Soil Sci 137:415–418.

    Article  CAS  Google Scholar 

  • Bewley RJ, Parkinson D (1985) Bacterial and fungal activity in sulfur dioxide polluted soils. Can J Microbiol 31:13–15.

    Article  CAS  Google Scholar 

  • Bewley RJ, Parkinson D (1986a) Sensitivity of certain soil microbial processes to acid deposition. Pedobiologia 29:73–84.

    CAS  Google Scholar 

  • Bewley RJ, Parkinson D (1986b) Monitoring the impact of acid deposition on the soil microbiota, using glucose and vanillin decomposition. Water Air Soil Pollut 27:57–68.

    Article  CAS  Google Scholar 

  • Beyer WN, Hensler G, Moore J (1987) Relation of pH and other soil variables to concentration of Pb, Cu, Zn, Cd, and Se in earthworms. Pedobiologia 30:167–172.

    CAS  Google Scholar 

  • Bigg WL (1981) Some effects of nitrate, ammonium and mycorrhizal fungi on the growth of Douglas fir and Sitka spruce. Ph.D. thesis, University of Aberdeen, Scotland.

    Google Scholar 

  • Binkley D, Richter D (1987) Nutrient cycles and H+ budgets of forest ecosystems. In: Macfayden A, Ford ED (eds) Advances in Ecological Research, Vol. 16. Academic Press, London, pp 1–51.

    Chapter  Google Scholar 

  • Binkley D, Driscoll CT, Allen HL, Schoeneberger P, McAvoy D (1989) Acidic Deposition and Forest Soils. Ecological Studies, Vol. 72. Springer-Verlag, New York.

    Google Scholar 

  • Bitton G, Boylan RA (1985) Effects of acid precipitation on soil microbial activity: I. Soil core studies. J Environ Qual 14:66–68.

    Article  CAS  Google Scholar 

  • Bitton G, Volk BG, Graetz DA, Bossart JM, Boylan RA, Byers GE (1985) Effects of acid precipitation on soil microbial activity: II. Field studies. J Environ Qual 14:69–71.

    Article  CAS  Google Scholar 

  • Björkman E (1942) Über die Bedingungen der Mykorrhizabildung bei Kiefer und Fichte. Symb Bot Ups 6:1–191.

    Google Scholar 

  • Blackmer AM, Bremner JM, Schmidt EL (1980) Production of nitrous oxide by ammonia-oxidizing chemoautotrophic microorganisms in soil. Appl Environ Microbiol 40:1060–1066.

    PubMed  CAS  Google Scholar 

  • Blair JM, Parmelee RW, Wyman RL (1994) A comparison of the forest floor invertebrate communities of four forest types in the northeastern U.S. Pedobiologia 38:146–160.

    Google Scholar 

  • Blaschke H (1988) Mycorrhizal infection and changes in fine-root development of Norway spruce influenced by acid rain in the field. In: Ectomycorrhiza and Acid Rain. Proceedings, Workshop Ectomycorrhiza/Expert Meeting, Berg en Dal, Netherlands. CEC Air Pollut Res Rep 12 (EUR 11534):112–115.

    Google Scholar 

  • Blaschke H (1990) Mycorrhizal populations and fine root development on Norway spruce exposed to controlled doses of gaseous pollutants and simulated acidic rain treatments. Environ Pollut 68:409–417.

    Article  PubMed  CAS  Google Scholar 

  • Bohlen PJ, Edwards CA (1994) The response of nematode trophic groups to organic and inorganic nutrient inputs in agroecosystems. Defining Soil Quality for a Sustainable Environment, Soil Sci Soc Amer Spec Publ No 35 pp 235–244.

    Google Scholar 

  • Bond G (1974) Symbiosis with actinomycete-like organisms. In: Quispel A (ed) The Biology of Nitrogen Fixation. Plenum Press, Amsterdam, pp 342–378

    Google Scholar 

  • Booth IR (1985) Regulation of cytoplasmic pH in bacteria. Microbiol Rev 49:359–378.

    PubMed  CAS  Google Scholar 

  • Borror DJ, DeLong DM, Triplehorn CA (1976) Introduction to the study of insects. Holt, Rinehart and Winston, New York.

    Google Scholar 

  • Brewer PF, Heagle AS (1983) Interactions between Glomus geosporum and exposure of soybeans to ozone or simulated acid rain in the field. Phytopathology 73: 1035–1040.

    Article  Google Scholar 

  • Brown K (1985) Acid deposition: Effects of sulphuric acid at pH 3 on chemical and biochemical properties of bracken litter. Soil Biol Biochem 17:31–38.

    Article  CAS  Google Scholar 

  • Bryant RD, Gordy EA, Laishley EJ (1979) Effect of soil acidification on the soil microflora. Water Air Soil Pollut 11:437–445.

    Article  CAS  Google Scholar 

  • Brzeski MW, Dowe A (1969) Effect of pH on Tylenchorhynchus dubius (Nematoda, Tylenchidae). Nematologica 15:403–407.

    Article  Google Scholar 

  • Burgess RL (ed) (1984) Effects of acidic deposition on forest ecosystems in the Northeastern United States: an evaluation of current evidence. Institute of Environmental Program Affairs, State University of New York, Syracuse.

    Google Scholar 

  • Burns RG (1978) Soil Enzymes. Academic Press, London.

    Google Scholar 

  • Burt AJ, Hashem AR, Shaw G, Read DJ (1986) 1st SEM, Dijon, 1-5.7.1985. INRA, Paris, pp 683–687.

    Google Scholar 

  • Campbell CD, Chapman SJ, Urquhart F (1995) Effect of nitrogen fertilizer on temporal and spatial variation of mineral nitrogen and microbial biomass in a silvopastoral system. Biol Fertil Soils 19:177–184.

    Article  Google Scholar 

  • Carlyle JC (1986) Nitrogen cycling in forested ecosystems. For Abstr 47:307–336.

    Google Scholar 

  • Carter MR (1986) Microbial biomass and mineralizable nitrogen in solonetzic soils: influence of gypsum and lime amendments. Soil Biol Biochem 18:531–537.

    Article  CAS  Google Scholar 

  • Chambers CA, Smith SE, Smith FA (1980) Effects of ammonium and nitrate ions on mycorrhizal infection, nodulation and growth of Trifolium subterraneum. New Phytol 85:47–62.

    Article  CAS  Google Scholar 

  • Chang F-H, Alexander M (1983) Effect of simulated acid precipitation on algal fixation of nitrogen and carbon dioxide in forest soils. Environ Sci Technol 17:11–13.

    Article  CAS  Google Scholar 

  • Chang F-H, Alexander M (1984) Effect of simulated acid precipitation on decomposition and leaching of organic carbon in forest soils. Soil Sci 138:226–234.

    Article  CAS  Google Scholar 

  • Chétail M, Krampitz G (1982) Calcium and skeletal structures in mollusc: concluding remarks. In: Proceedings of the 7th International Malacological Congress. Malacologia 22:337–339.

    Google Scholar 

  • Clapperton M J, Parkinson D (1990) Effects of SO2 on VA Mycorrhizae associated with a sub-montane mixed grass prairie in Alberta, Canada. Can J Bot 68:1646–1650.

    Article  CAS  Google Scholar 

  • Clapperton MJ, Reid DM, Parkinson D (1990) Effects of sulfur dioxide fumigation on Phieum pratense and vesicular-arbuscular mycorrhizal fungi. New Phytol 115:465–469.

    Article  CAS  Google Scholar 

  • Clapperton MJ, Reid DM (1992) Effects of low-concentration sulfur dioxide fumigation and vesicular-arbuscular mycorrhizas on 14C-partitioning in Phleum pratense L. New Phytol 120:381–387.

    Article  CAS  Google Scholar 

  • Cleaves ET, Fisher DW, Bricker OP (1974) Chemical weathering of serpentinite in the eastern Piedmont of Maryland. Geol Soc Am Bull 85:437–444.

    Article  CAS  Google Scholar 

  • Cole CV, Stewart JW (1983) Impact of acid deposition on P cycling. Environ Exp Bot 23:235–241.

    Article  CAS  Google Scholar 

  • Cole DW, Johnson DW (1977) Atmospheric sulfate additions and cation leaching in Douglas-fir ecosystem. Water Resour Res 13:313–317.

    Article  CAS  Google Scholar 

  • Cowling E (1982) An historical resume of progress in scientific and public understanding of acid precipitation and its biological consequences. In: D’itri FM (ed) Acid Precipitation: Effects on Ecological Systems. Ann Arbor Science, Ann Arbor, MI, pp 43–83.

    Google Scholar 

  • Craft CB, Webb JW (1984) Effects of acidic and neutral sulfate salt solutions on forest floor arthropods. J Environ Qual 13:436–440.

    Article  CAS  Google Scholar 

  • Cronan CS (1985) Comparative effects of precipitation acidity on three forest soils: carbon cycling responses. Plant Soil 88:101–112.

    Article  Google Scholar 

  • Crowell HH (1973) Laboratory study of calcium requirements of the brown garden snail Helix aspersa Müller. Proc Malacol Soc London 40:491–503.

    Google Scholar 

  • Crutzen PJ (1970) The influence of nitrogen oxides on the atmospheric ozone content. QJR Meteorol Soc 96:320–325.

    Article  Google Scholar 

  • Dāhne J, Klingelhöfer D, Ott M, Rothe GM (1995) Liming induced stimulation of the amino acid metabolism in mycorrhizal roots of Norway spruce (Picea abies [L.] Karst.). Plant Soil 173:67–77.

    Article  Google Scholar 

  • Dancer WS, Peterson LA, Chesters G (1973) Ammonification and nitrification of nitrogen as influenced by soil pH and previous nitrogen treatments. Soil Sci Soc Am Proc 37:67–69.

    Article  CAS  Google Scholar 

  • Davidson EA, Myrold DD, Groffman PM (1990) Denitrification in a temperate forest ecosystem. In: Gessel SP, Lacate DS, Weetman GF, Powers RF (eds) Sustained Productivity of Forest Soils University of British Columbia, Vancouver, pp 196–220.

    Google Scholar 

  • Dean RA, Timberlake WE (1989a) Production of cell wall-degrading enzymes by Aspergillus nidulans: a model system for fungal pathogenesis of plants. Plant Cell 1:265–273.

    Article  PubMed  CAS  Google Scholar 

  • Dean RA, Timberlake WE (1989b) Regulation of the Aspergillus nidulans pectate lyase gene (pelA). Plant Cell 1:275–284.

    Article  PubMed  CAS  Google Scholar 

  • De Boer W, Gunnewiek PJAK, Troelstra SR, Laanbroek HJ (1989) Two types of chemolithotrophic nitrification in acid heathland humus. Plant Soil 119:229–235.

    Article  Google Scholar 

  • De Boer W, Tietema A, Gunnewiek PJAK, Laanbroek HJ (1992) The chemolithotrophic ammonium-oxidizing community in a nitrogen-saturated acid forest soil in relation to pH-dependent nitrifying activity. Soil Biol Biochem 24:229–234.

    Article  Google Scholar 

  • de Goede RGM, Dekker HH (1993) Effects of liming and fertilization on nematode communities in coniferous forest soils. Pedobiologia 37:193–209.

    Google Scholar 

  • Denison R, Caldwell B, Bormann B, Eldred L, Swanberg C, Anderson S (1977) The effects of acid rain on nitrogen fixation in western Washington coniferous forest. Water Air Soil Pollut 8:21–34.

    CAS  Google Scholar 

  • Dighton J, Mason PA (1985) Mycorrhizal dynamics during forest tree development. In: Moore D, Casselton LA, Wood DA, Frankland JC (eds) Developmental Biology of Higher Fungi. Cambridge University Press, Cambridge, pp 117 139.

    Google Scholar 

  • Dighton J, Skeffington RA (1987) Effects of artificial acid precipitation on the mycorrhizas of Scots pine seedlings. New Phytol 107:191–202.

    Article  CAS  Google Scholar 

  • Dighton J, Jansen J (1991) Atmospheric pollutants and ectomycorrhizae: more questions than answers? Environ Pollut 73:179–203.

    Article  PubMed  CAS  Google Scholar 

  • Dignon J (1992) NOx and SOx emissions from fossil fuels: a global distribution. Atmos Environ 26A: 1157–1163.

    CAS  Google Scholar 

  • Dillon PJ, Lusis M, Reid R, Yap D (1988) Ten-year trend in sulphate, nitrate, and hydrogen deposition in central Ontario. Atmos Environ 22:901–905.

    Article  CAS  Google Scholar 

  • Dmowska E (1993) Effects of long-term artificial acid rain on species range and diversity of soil nematodes. Eur J Soil Biol 29:97–107.

    Google Scholar 

  • Dmowska E (1995) Influence of simulated acid rain on communities of soil nematodes. Acta Zool Fenn 196:321–323.

    Google Scholar 

  • Dodd JL, Lauenroth WK (1981) Effects of low-level SO2 fumigation on decomposition of western wheatgrass litter in a mixed grass prairie. Water Air Soil Pollut 15:257–261.

    Article  CAS  Google Scholar 

  • Domanski S, Kowalski T (1987) Fungi occurring on forests injured by air pollutants in the Upper Silesia and Cracow industrial regions. x. Mycoflora of dying young trees of Alnus incana. Eur J For Pathol 17:337–348.

    Article  Google Scholar 

  • Driscoll CT, Likens GE (1982) Hydrogen ion budget of an aggrading forest watershed. Tellus 34:283–292.

    Article  CAS  Google Scholar 

  • Edwards CA, Lofty JR (1969) The influence of agricultural practice on soil microarthropod populations. In: Sheals GJ (ed) The Soil Ecosystem. Systematics Assciation, London, pp 237–247.

    Google Scholar 

  • Edwards CA, Lofty JR (1975) The invertebrate fauna of the Park Grass Plots. I. Soil fauna. Rothamsted Exp Stn Rep 1974 (Part 2):133–154.

    Google Scholar 

  • Edwards CA, Butler CG, Lofty JR (1976) The invertebrate fauna of the Park Grass Plots. II. Surface fauna. Rothamsted Exp Stn Rep 1975 (Part 2):133–154.

    Google Scholar 

  • Edwards CA, Bohlen PJ (1996) The Biology and Ecology of Earthworms, 3rd Edition. Chapman and Hall, London.

    Google Scholar 

  • Edwards GS, Kelly JM (1992) Ectomycorrhizal colonization of loblolly pine seedlings during three growing seasons in response to ozone, acidic precipitation, and soil Mg status. Environ Pollut 76:71–77.

    Article  PubMed  CAS  Google Scholar 

  • Entry JA, Cromack K Jr, Stafford SG, Castellano MA (1987) The effect of pH and aluminum concentration on ectomycorrhizal formation in Abies balsamea. Can J For Res 17:865–871.

    Article  CAS  Google Scholar 

  • Entry JA, Backman CB (1995) Influence of carbon and nitrogen on cellulose and lignin degradation in forest soils. Can J For Res 25:1231–1236.

    Article  CAS  Google Scholar 

  • Erland S, Söderström B (1991) Effects of liming on ectomycorrhizal fungi infecting Pinus sylvestris L. III. Saprophytic growth and host plant infection at different pH values by some ectomycorrhizal fungi in unsterile humus. New Phytol 117:405–411.

    Article  CAS  Google Scholar 

  • Escritt JR, Arthur JH (1948) Earthworm control — a résumé of methods available. J Board of Greenkeep Res 7:49.

    Google Scholar 

  • Escritt JR, Lidgate HR (1964) Report on fertilizer trials. J Sports Turf Res Inst 40:7–42.

    Google Scholar 

  • Esher RJ, Marx DH, Ursic SJ, Baker RL, Brown LR, Coleman DC (1992) Simulated acid rain effects on fine roots, ectomycorrhizae, microorganisms, and invertebrates in pine forests of the southern United States. Water Air Soil Pollut 61:269–278.

    Article  CAS  Google Scholar 

  • Faber JH (1991) Functional classification of soil fauna: a new approach. Oikos 62:110–117.

    Article  Google Scholar 

  • Faber JH, Verhoef HA (1991) Functional differences between closely-related soil arthropods with respect to decomposition processes in the presence or absence of pine tree roots. Soil Biol Biochem 23:15–23.

    Article  CAS  Google Scholar 

  • Falappi D, Farini A, Ranalli G, Sorlini C (1994) Effects of simulated acid rain on some microbiological parameters of subacid soil. Chemosphere 28:1087–1095.

    Article  CAS  Google Scholar 

  • Fauci MF, Dick RP (1994) Soil microbial dynamics: short- and long-term effects of inorganic and organic nitrogen. Soil Sci Soc Am J 58:801–806.

    Article  Google Scholar 

  • Fellows PJ, Worgan JT (1984) An investigation into the pectolytic activity of the yeast Saccharomycopsis fibuliger. Enzyme Microb Technol 6:405–410.

    Article  CAS  Google Scholar 

  • Fenn ME, Dunn PH, Durall DM (1989) Effects of ozone-and sulfur dioxide on phyllosphere fungi from three tree species. Appl Environ Microbiol 55:412–418.

    PubMed  CAS  Google Scholar 

  • Firestone MK, Firestone RB, Tiedje JM (1980) Nitrous oxide from soil denitrification: factors controlling its biological production. Science 208:749–751.

    Article  PubMed  CAS  Google Scholar 

  • Firestone MK (1982) Biological denitrification. In: Stevenson FG (ed). Nitrogen in Agricultural Soils. American Society of Agronomy, Madison, WI, pp 289–326.

    Google Scholar 

  • Firestone MK, McColl JG, Killham KS, Brooks PD (1984) Microbial response to acid deposition and effects on plant productivity. In: Linhurst RA (ed) Direct and Indirect Effects of Acidic Deposition on Vegetation. Ann Arbor Science Publishing, Ann Arbor, MI, pp 51–63.

    Google Scholar 

  • Fischer P, Führer E (1990) Effect of soil acidity on the entomophilic nematode Steinernema kraussei Steiner. Biol Fertil Soils 9:174–177.

    Article  Google Scholar 

  • Fowler D (1984) Transfer to terrestrial surfaces. Philos Trans R Soc London B Biol Sci 305:281–297.

    Article  CAS  Google Scholar 

  • Francis AJ, Olson D, Bernatsky R (1980) Effects of acidity on microbial processes in a forest soil. Presented at the International Conference on the Ecological Impact of Acid Precipitation, ASNLH, Norway, 11–14 March 1980. BNL-27848. Brookhaven National Laboratory, Upton, NY.

    Google Scholar 

  • Francis A J (1982) Effects of acidic precipitation and acidity on soil microbial processes. Water Air Soil Pollut 18:375–394.

    Article  CAS  Google Scholar 

  • Franz H (1959) Das diologische Geschehen im Waldboden und seine Beeinflussung durch die Kalkdungung. Allg Forst Ztg 70:178–181.

    Google Scholar 

  • Freedman B, Hutchinson TC (1980) Smelter pollution near Sudbury, Ontario, Canada, and effects on forest litter decomposition. In: Hutchinson TC, Havas M (eds) Effects of Acidic Precipitation on Terrestrial Ecosystems. NATO ASI Ser 1 Global Environ Change 4:395–434.

    Google Scholar 

  • French DD (1988) Some effects of changing soil chemistry on decomposition of plant litters and cellulose on a Scottish moor. Oecologia 75:608–618.

    Article  Google Scholar 

  • Fritze H, Kiikkilä O, Pasanen J, Pietikäinen J (1992) Reaction of forest soil microflora to environmental stress along a moderate pollution gradient next to an oil refinery. Plant Soil 140:175–182.

    Article  CAS  Google Scholar 

  • Furlan V, Bernier-Cardou M (1989) Effects of N, P, and K on formation of vesicular-arbuscular mycorrhizae, growth and mineral content of onion. Plant Soil 113:167–174.

    Article  CAS  Google Scholar 

  • Gagnon J, Langlois CG, Garbaye J (1991) Growth and ectomycorrhiza formation of container-grown red oak seedlings as a function of nitrogen fertilization and inoculum type of Lacearia bicolor. Can J For Res 21:966–973.

    Article  Google Scholar 

  • Galloway JN, Likens GE, Hawley ME (1984) Acidic precipitation: natural versus anthropogenic components. Science 226:829–831.

    Article  PubMed  CAS  Google Scholar 

  • Garbaye J, Kabre A, Le Tacon F, Mousain D, Piou D (1979) Fertilization minérale et fructification des champignons supérieurs en hêtraie. Ann Sci For (Paris) 36: 151–164.

    CAS  Google Scholar 

  • Garbaye J, Le Tacon F (1982) Influence of mineral fertilization and thinning intensity on the fruit body production of epigeous fungi in an artificial spruce stand (Picea excelsa Link) in north-eastern France. Acta Oecol Oecol Plant 3:153–160.

    Google Scholar 

  • Garden A, Davies RW (1988) The effects of a simulated acid precipitation on leaf litter quality and the growth of a detritivore in a buffered lotic system. Environ Pollut 52:303–313.

    Article  PubMed  CAS  Google Scholar 

  • Gärdenfors U (1992) Effects of artificial liming on land snail populations. J Appl Ecol 29:50–54.

    Article  Google Scholar 

  • Garland JA (1977) The dry deposition of sulfur dioxide to land and water surfaces. Proc R Soc London A 354:245–268.

    Article  CAS  Google Scholar 

  • Gates CE (1978) Contributions to a revision of the earthworm family Lumbricidae. XXII. The genus Eisenia in North America. Megadrilogica 3:131–147.

    Google Scholar 

  • Gerard BM, Hay RKM (1979) The effect on earthworms of ploughing, tined cultivation, direct drilling and nitrogen in a barley monoculture system. J Agric Sci 93:147–155.

    Article  Google Scholar 

  • Germida JJ, Wainwright M, Gupta VVSR (1992) Biochemistry of sulfur cycling in soil. In: Stotzky G, Bollag J-M (eds) Soil Biochemistry. Marcel Dekker, New York, pp 1–53.

    Google Scholar 

  • Ghani A, McLaren RG, Swift RS (1992) Sulphur mineralization and transformations in soils as influenced by additions of carbon, nitrogen and sulphur. Soil Biol Biochem 24:331–341.

    Article  CAS  Google Scholar 

  • Ghiorse WC, Alexander M (1976) Effects of microorganisms on the sorption and fate of sulfur dioxide and nitrogen dioxide in soil. J Environ Qual 5:227–230.

    Article  CAS  Google Scholar 

  • Göbl F (1988) Mykorrhiza-und Fein Wurzeluntersuchungen im Waldschadensgebiert Gleingraben/Steiermark. Österr Forstztg 6:16–18.

    Google Scholar 

  • Gorham E (1955) On the acidity and salinity of rain. Geochim Cosmochim Acta 7:231–239.

    Article  CAS  Google Scholar 

  • Gorissen A, Joosten NN, Burgers SLGE (1994) Ammonium deposition and the mycoflora in the rhizosphere of Douglas-fir. Soil Biol Biochem 26:1011–1022.

    Article  CAS  Google Scholar 

  • Gosz JR (1981) Nitrogen cycling in coniferous ecosystems. In: Clark FE, Rosswall T (eds) Terrestrial Nitrogen Cycles. Ecol Bull 33:405–426.

    Google Scholar 

  • Gould RP, Minchin PEH, Young PC (1988) The effects of sulfur dioxide on phloem transport in two cereals. J Exp Bot 39:997–1007.

    Article  CAS  Google Scholar 

  • Granhall U, Selander H (1973) Nitrogen fixation in subarctic mire. Oikos 24:8–15.

    Article  Google Scholar 

  • Grant IF, Bancroft K, Alexander M (1979) SO2 and NO2 effects on microbial activity in acid forest soil. Microb Ecol 5:85–89.

    Article  CAS  Google Scholar 

  • Gray TRG, Ineson P (1981) The effects of sulphur dioxide and acid rain on the decomposition of leaf litter. J Sci Food Agric 32:624–625.

    Article  Google Scholar 

  • Greszta J, Gruszka A, Wachalewski T (1992) Humus degradation under the influence of simulated ‘acid rain’. Water Air Soil Pollut 63:51–66.

    Article  CAS  Google Scholar 

  • Gundersen P (1991) Nitrogen deposition and the forest nitrogen cycle: role of denitrification. For Ecol Manage 44:15–28.

    Article  Google Scholar 

  • Gunnarsson T, Rundgren S (1986) Nematode infestation and hatching failure of lumbricid cocoons in acidified and metal polluted soils. Pedobiologia 29:165–173.

    Google Scholar 

  • Gupta VVSR, Jawrence JR, Germida JJ (1988) Impact of elemental sulfur fertilization on agricultural soils. I. Effects on microbial biomass and enzyme activities. Can J Soil Sci 68:463–473.

    Article  CAS  Google Scholar 

  • Hågvar S, Abrahamsen G (1977a) Effect of artificial acid rain on Enchytraeidae, Collembola and Acarina in coniferous forest soil, and on Enchytraeidae in sphagnum bog — preliminary results. In: Lohm U, Persson T (eds) Soil Organisms as Components of Ecosystems. Proceedings of the VI International Soil and Zoology Colloquium, Stockholm. Ecol Bull 25:568–570.

    Google Scholar 

  • Hågvar S, Abrahamsen G (1977b) Acidification experiments in conifer forest. 5. Studies on the soil fauna. In: Acid Precipitation — Effects on Forest and Fish — Project Norway. Internal Rep 32:1–47.

    Google Scholar 

  • Hågvar S (1978) Acidification experiments in coniferous forests. 6. Effects of acidification and liming on Collembola and Acarina. SNSF, Oslo, Norway. IR36/78.

    Google Scholar 

  • Hågvar S (1980) Effects of artificial acid precipitation on soil and forests. 7. Soil animals, p 202–203. In: Drabloes D, Tollan A (eds) Ecological Impact of Acid Precipitation. Proceedings of an International Conference. SNSF, Oslo, Norway.

    Google Scholar 

  • Hågvar S, Abrahamsen G (1980) Colonization by Enchytraeidae, Collembola and Acari in sterile soil samples with adjusted pH levels. Oikos 34:245–258.

    Article  Google Scholar 

  • Hågvar S, Amundsen T (1981) Effect of liming and artificial acidrain on the mite (Acari) fauna in coniferous forest. Oikos 37:7–20.

    Article  Google Scholar 

  • Hågvar S, Kjøndal BR (1981a) Decomposition of birch leaves: dry weight loss, chemical changes, and effects of artificial acid rain. Pedobiologia 22:232–245.

    Google Scholar 

  • Hågvar S, Kjøndal BR (1981b) Effects of artificial acid rain on the microarthropod fauna in decomposing birch leaves. Pedobiologia 22:409–422.

    Google Scholar 

  • Hågvar S (1984a) Effects of liming and artificial acid rain on Collembola and Protura in coniferous forest. Pedobiologia 27:341–354.

    Google Scholar 

  • Hågvar S (1984b) Six common mite species (Acari) in Norwegian coniferous forest soils: relations to vegetation types and soil characteristics. Pedobiologia 27:355–364.

    Google Scholar 

  • Hågvar S, Abrahamsen G (1984) Collembola in Norwegian coniferous forest soils. III. Relation to soil chemistry. Pedobiologia 27:331–339.

    Google Scholar 

  • Hågvar S (1987a) Effects of artificial acid precipitation and liming on forest microarthropods. In: Proceedings of the 9th International Colloquium on Soil Zoology, Moscow. Nauka, USSR, pp 661–668.

    Google Scholar 

  • Hågvar S (1987b) What is the importance of soil acidity for the soil fauna? Fauna 40:64–72.

    Google Scholar 

  • Hågvar S (1988a) Acid rain and soil fauna. In: Iturrondobeitia JC (ed) Biologia Ambiental. Tomo I. Proceedings of the Second World Basque Congress, Bilbao, November 1987. Universidad del Pais Vasco, Bilbao, pp 191–201.

    Google Scholar 

  • Hågvar S (1988b) Decomposition studies in an easily-constructed microcosm: effects of microarthropods and varying soil pH. Pedobiologia 31:293–303.

    Google Scholar 

  • Hågvar S (1990) Reactions to soil acidification in microarthropods: is competition a key factor? Biol Fertil Soils 9:178–181.

    Article  Google Scholar 

  • Halstead RL (1964) Phosphate activity of soils as influenced by lime and other treatments. Can J Soil Sci 44:137–144.

    Article  CAS  Google Scholar 

  • Hancock JG, Millar RL, Lorbeer JW (1964) Pectolytic and cellulolytic enzymes produced by Botrytis allii, B. cinerea and B. squamosa in vitro and in vivo. Phytopathology 54:928–931.

    CAS  Google Scholar 

  • Harley JL, Smith SE (1983) Mycorrhizal Symbiosis. Academic Press, London.

    Google Scholar 

  • Harrison AF (1987) Soil Organic Phosphorus. CAB International, Wallingford.

    Google Scholar 

  • Hartenstein R (1962) Soil Oribatei. I. Feeding specificity among forest soil Oribatei (Acarina). Ann Entomol Soc Am 55:202–206.

    Google Scholar 

  • Hauhs M, Rost-Siebert K, Raben G, Paces T, Vigerus B (1989) Summary of European data. In: Malanchuk JL, Nilsson J (eds). The Role of Nitrogen in the Acidification of Soils and Surface Waters. Nordic Council of Ministers, Copenhagen, Denmark.

    Google Scholar 

  • Hayman DS (1970) Endogone spore numbers in soil and vesicular arbuscular mycorrhiza in wheat as influenced by season and soil treatment. Trans Br Mycol Soc 54:53–63.

    Article  Google Scholar 

  • Hayman DS, Travares M (1985) Plant growth responses to vesicular-arbuscular mycorrhiza. XV. Influence of soil pH on the symbiotic efficiency of different endophytes. New Phytol 100:367–377.

    Article  Google Scholar 

  • Haynes RJ, Swift RS (1988) Effects of lime and phosphate additions on changes in enzyme activities, microbial biomass and levels of extractable nitrogen, sulphur and phosphorus in an acid soil. Biol Fertil Soil 6:153–158.

    Article  CAS  Google Scholar 

  • Heijne B, van Dam D, Heil GB, Bobbink R (1989a) The influence of the “acid rain” component ammonium sulphate on vesicular arbuscular mycorrhiza. In: Brasser LJ, Mulder WC (eds) Man and His Ecosystem. Proceedings of the 8th World Clean Air Congress 1989, The Hague, Vol. 2. Elsevier, The Netherlands, pp 257–261.

    Google Scholar 

  • Heijne B, Heil GB, van Dam D (1989b) Relations between acid rain and vesicular-arbuscular mycorrhiza. Agric Ecosyst Environ 29:187–192.

    Article  Google Scholar 

  • Heilman PE (1975) Effects of added salts on nitrogen release and nitrate levels in forest soils of the Washington coastal area. Soil Sci Soc Am Proc 39:778–782.

    Article  CAS  Google Scholar 

  • Hendrickson OQ (1985) Variation in the C: N ratio of substrate mineralized during forest humus decomposition. Soil Biol Biochem 17:435–440.

    Article  Google Scholar 

  • Hepper CM (1983) The effect of nitrate and phosphate on the vesicular arbuscular mycorrhizal infection of lettuce. New Phytol 93:389–399.

    Article  CAS  Google Scholar 

  • Hepper CM (1984) Inorganic sulfur nutrition of the vesicular-arbuscular mycorrhizal fungus Glomus caledonium. Soil Biol Biochem 16:669–671.

    Article  CAS  Google Scholar 

  • Hern JA, Rutherford GK, vanLoon GW (1985) Chemical and pedogenetic effects of simulated acid precipitation on two eastern Canadian forest soils. I. Nonmetals. Can J For Res 15:839–847.

    Article  CAS  Google Scholar 

  • Heungens A (1981) Nematode populations fluctuations in a pine litter after treatment with pH changing compounds. Meded Fac Landbouww Rijksuniv Gent 46: 1267–1281.

    CAS  Google Scholar 

  • Heungens A, van Daele E (1984) The influence of some acids, bases and salts on the mite and Collembola population of a pine litter substrate. Pedobiologia 27:299–311.

    Google Scholar 

  • Hile N, Hennen JF (1969) In vitro culture of Pisolithus tinctorius mycelium. Micologia 61:195–198.

    Article  Google Scholar 

  • Ho I, Trappe JM (1984) Effects of ozone exposure on mycorrhiza formation and growth of Festuca arundinacea. Environ Exp Bot 24:71–74.

    Article  CAS  Google Scholar 

  • Homann PS, Cole DW (1990) Sulfur dynamics in decomposing forest litter: relationship to initial concentration, ambient sulfate and nitrogen. Soil Biol Biochem 22:621–628.

    Article  CAS  Google Scholar 

  • Hovland J, Abrahamsen G, Ogner G (1980) Effects of artificial acid rain on decomposition of spruce needles and on mobilization and leaching of elements. Plant Soil 56:365–378.

    Article  CAS  Google Scholar 

  • Hovland J (1981) The effect of artificial acid rain on respiration and cellulase activity in Norway spruce needle letter. Soil Biol Biochem 13:23–26.

    Article  CAS  Google Scholar 

  • Hryniuk J (1966) Influence of many years fertilization on the mesofauna in soil. In: Rapoport EH (ed) Progresos en Biologia del Suelo. Ler Coloquio Latinoamericano de Biologia del Suelo, Bahia Blance, 1965, Montevideo, pp 413–417.

    Google Scholar 

  • Huhta V (1984) Response of Cognettia sphagnetorum (Enchytraeidae) to manipulation of pH and nutrient status in coniferous forest soil. Pedobiologia 27:254–260.

    Google Scholar 

  • Huhta V, Karppinen E, Nurminen M, Valpas A (1967) Effect of silvicultural practices upon arthropod, annelid and nematode populations in coniferous forest soil. Ann Zool Fenn 4:87–143.

    Google Scholar 

  • Huhta V, Matli N, Valpas A (1969) Further notes on the effect of silvicultural practices upon the fauna of coniferous forest soil. Ann Zool Fenn 6:327–334.

    Google Scholar 

  • Huhta V, Hyvönen R, Koskenniemi A, Vilkamaa P (1983) Role of pH in the effect of fertilization on Nematoda, Oligochaeta and Microarthropoda. In: Lebrun P, Andre HM, Medts AD, Gregoire-Wibo C, Wauthy G (eds) New Trends in Soil Biology. Proceedings VIII. International Colloquium of Soil and Zoology, Lou-vain-la-Neuve, pp 61–73.

    Google Scholar 

  • Huhta V, Hyvönen R, Koskenniemi A, Vilkamaa P, Kaasalainen P, Sulander M (1986) Response of soil fauna to fertilization and manipulation of pH in coniferous forests. Acta For Fenn 195:1–30.

    Google Scholar 

  • Hung LL, Trappe JM (1983) Growth variation between and within species of ectomycorrhizal fungi in response to pH in vitro. Mycologia 75:234–241.

    Article  Google Scholar 

  • Huther W (1959) Zur ernahrung der Pauropoden. Naturwissenschaften 19:563–564.

    Article  Google Scholar 

  • Hutson BR (1978) Influence of pH, temperature and salinity on the fecundity and longevity of four species of Collembola. Pedobiologia 18:163–179.

    Google Scholar 

  • Hyvönen R, Huhta V (1989) Effects of Mme, ash and nitrogen fertilizers on nematode populations in Scots pine forests. Pedobiologia 33:129–143.

    Google Scholar 

  • Hyvönen R, Persson T (1990) Effects of acidification and liming on feeding groups of nematodes in coniferous forest soils. Biol Fertil Soils 3:57–68.

    Google Scholar 

  • Illmer P, Schinner F (1991) Effects of lime and nutrient salts on the microbiological activities of forest soils. Biol Fertil Soils 11:261–266.

    Article  Google Scholar 

  • Illmer P, Marschall K, Schinner F (1995) Influence of available aluminum on soil microorganisms. Lett Appl Microbiol 21:393–397.

    Article  CAS  Google Scholar 

  • Ineson P (1983) The effect of airborne sulphur pollutants upon decomposition and nutrient release in forest soils. Ph.D. thesis, University of Liverpool, UK.

    Google Scholar 

  • Jarvis BW, Land GE, Wieder RK (1987) Arylsulfatase activity in peat exposed to acid precipitation. Soil Biol Biochem 19:107–109.

    Article  CAS  Google Scholar 

  • Jefferson P (1955) Studies on earthworms of turf. B. Earthworms and soil. J Sports Turf Res Inst 9:166–179.

    Google Scholar 

  • Johnson AC, Wood M (1990) DNA, a possible site of action of aluminum in Rhizobium spp. Appl Environ Microbiol 56:3629–3633.

    PubMed  CAS  Google Scholar 

  • Johnson AH, Siccama TJ (1983) Acid deposition and forest decline. Environ Sci Technol 17:294–306.

    Article  Google Scholar 

  • Johnson DD, Guenzi WD (1963) Influence of salts on ammonium oxidation and carbon dioxide evolution from soil. Soil Sci Soc Am Proc 27:663–666.

    Article  CAS  Google Scholar 

  • Johnson DW, Hornbeck JW, Kelly JM, Swank WT, Todd DE (1980) Regional pattern of soil sulfate accumulation: relevance to ecosystem sulfur budgets. In: Shriner DS, Richmond CR, Lindberg SE (eds) Atmospheric Sulfur Deposition. Environmental Impact and Health Effects. Ann Arbor Press, Ann Arbor, MI, pp 507–520.

    Google Scholar 

  • Johnson DW, Henderson GS, Huff DD, Lindberg SE, Richter DD, Shriner DS, Todd DE, Turner J (1982) Cycling of organic and inorganic sulfur in a chestnut oak forest. Oecologia 54:141–148.

    Article  Google Scholar 

  • Johnson DW (1984) Sulfur cycling in forests. Biogeochemistry (Dordrecht) 1:29–43.

    CAS  Google Scholar 

  • Johnson DW, Todd DE (1984) Effects of acid irrigation on carbon dioxide evolution, extractable nitrogen, phosphorus, and aluminum in deciduous forest soil. Soil Sci Soc Am J 48:664–666.

    Article  CAS  Google Scholar 

  • Johnson DW, Kelly JM, Swank WT, Cole DW, Hornbeck JW, Pierce RS, Van Lear D (1985) A comparative evaluation of the effects of acid precipitation, natural acid production, and harvesting on cation removal from forests. ERD Publ 2508. Oak Ridge National Laboratory, Oak Ridge, TN.

    Google Scholar 

  • Johnson DW, Van Miegroet H, Kelly JM (1986) Sulfur cycling in five forest ecosystems. Water Air Soil Pollut 30:965–979

    Article  CAS  Google Scholar 

  • Johnson DW (1987) Acid deposition and forest nutrient cycling. ESD Rep. 870416. Oak Ridge National Laboratory, Oak Ridge, TN, pp 1–13.

    Google Scholar 

  • Kabata-Pendias A, Pendias H (1986) Trace Elements in Soils and Plants. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Kaplan DL, Hartenstein R, Neuhauser EF, Malecki MR (1980) Physicochemical requirements in the environment of the earthworm Eisenia foetida. Soil Biol Biochem 12:347–352.

    Article  Google Scholar 

  • Kardell L, Eriksson L (1987) Kremlor, riskor, soppar. Skogsbruksmetodernas inverkan på productionen av matsvamar. Sver Skogsvårdsförb Tidskr 2:3–23.

    Google Scholar 

  • Keane KD, Manning WJ (1988) Effects of ozone and simulated acid rain on birch seedlings growth and formation of ectomycorrhizae. Environ Pollut 52:55–56.

    Article  PubMed  CAS  Google Scholar 

  • Kelly JM, Strickland RC (1984) CO2 efflux from deciduous forest litter and soil in response to simulated acid rain treatment. Water Air Soil Pollut 23:431–440.

    Article  CAS  Google Scholar 

  • Killham K, Wainwright M (1981) Deciduous leaf litter and cellulose decomposition in soil exposed to heavy atmospheric pollution. Environ Pollut Ser A Ecol Biol 26:79–85.

    Article  Google Scholar 

  • Killham K, Firestone MK (1982) Evaluation of accelerated H+ applications in predicting soil chemical and microbial changes due to acid rain. Commun Soil Sci Plant Anal 13:995–1001.

    Article  CAS  Google Scholar 

  • Killham K, Firestone MK (1983) Vesicular-arbuscular mycorrhizal mediation of grass response to acidic and heavy metal depositions. Plant Soil 72:39–48.

    Article  CAS  Google Scholar 

  • Killham K, Firestone MK, McColl JC (1983) Acid rain and soil microbial activity: effects and their mechanisms. J Environ Qual 12:133–137.

    Article  CAS  Google Scholar 

  • Klein TM, Novick NJ, Kreitinger SP, Alexander M (1984) Simultaneous inhibition of carbon and nitrogen mineralization in forest soil by simulated acid precipitation. Bull Environ Contam Toxicol 32:698–703.

    Article  PubMed  CAS  Google Scholar 

  • Koskenniemi A, Huhta V (1986) Effects of fertilization and manipulation of pH on mite (Acari) populations of coniferous forest soil. Rev Ecol Biol Sol 23:271–286.

    Google Scholar 

  • Kratz W, Brose A, Weigmann G (1991) The influence of lime application in damaged pine forest ecosystems in Berlin (FRG): soil chemical and biological aspects. In: Ravera O (ed) Terrestrial and Aquatic Ecosystems: Perturbation and Recovery. Ellis Horwood, Chichester, pp 464–471.

    Google Scholar 

  • Kreutzer K (1995) Effects of forest liming on soil processes. Plant Soil 168–169:447–470.

    Article  Google Scholar 

  • Kuhnelt W (1961) Soil Biology with Special Reference to the Animal Kingdom. Faber and Faber, London.

    Google Scholar 

  • Kuperman R (1995) Abundance of soil macroinvertebrates in oak-hickory forests along the Ohio river acidic deposition gradient. Acta Zool Fenn 196:76–79.

    Google Scholar 

  • Kuperman R (1996) Relationships between soil properties and community structure of soil macroinvertebrates in oak-hickory forests along an acidic deposition gradient. Appl Soil Ecol (in press).

    Google Scholar 

  • Ladd JN (1978) Origin and Range of Enzymes in Soil. In: Burns RG (ed) Soil Enzymes. Academic Press, London, pp 51–96.

    Google Scholar 

  • Lampky JR, Peterson JE (1963) Pisolithus tinctorius associated with pines in Missouri. Micologia 55:675–678.

    Article  Google Scholar 

  • Lang E, Beese F (1985) Die Reaktion der microbiellen Bodenpopulation eines Buchenwaldes auf Kalkungsmaßnahmen. Allg Forstztg 43:1166–1169.

    Google Scholar 

  • Langkramer O, Lettl A (1982) Influence of industrial atmospheric pollution on soil biotic component of Norway spruce stands. Zentralbl Mikrobiol 137:180.

    CAS  Google Scholar 

  • Larkin RP, Kelly JM (1987) Influence of elevated ecosystem S levels on litter decomposition and mineralization. Water Air Soil Pollut 34:415–428.

    Article  CAS  Google Scholar 

  • Larkin RP, Kelly JM (1988a) A short-term microcosm evaluation of CO2 evolution from litter and soil as influenced by SO2 and SO4 additions. Water Air Soil Pollut 37:273–280.

    Article  CAS  Google Scholar 

  • Larkin RP, Kelly JM (1988b) Influence of elevated ecosystem S levels on litter decomposition and mineralization. Water Air Soil Pollut 34:415–428.

    Google Scholar 

  • Last FT, Likens GE, Ulrich B, Walloe L (1980) Acid precipitation—progress and problems. Conference summary. In: Drablos D Tollan A (eds) Ecological Impact of Acid Precipitation. SNSF, Oslo, Norway, pp 10–12.

    Google Scholar 

  • Lee JJ, Weber DE (1983) Effects of sulfuric acid rain on decomposition rate and chemical element content of hardwood leaf litter. Can J Bot 61:872–879.

    Article  CAS  Google Scholar 

  • Leetham JW, McNary TJ, Dodd JL, Laurenroth WK (1980) Response of field populations of Tardigrada to various levels of chronic low-level sulphur dioxide exposure. In: Dindal DL (ed) Soil Biology as Related to Land Use Practices. U.S. Environmental Protection Agency, Washington, DC, pp 382–390.

    Google Scholar 

  • Leetham JW, McNary TJ, Dodd JL, Laurenroth WK (1982) Response of soil nematodes, rotifers and tardigrades to three levels of season-long sulfur dioxide exposures. Water Air Soil Pollut 17:343–356.

    Article  CAS  Google Scholar 

  • Leetham JW, Dodd JL, Laurenroth WK (1983) Effects of low-level sulfur dioxide exposure on decomposition of Agropyron smithii litter under laboratory conditions. Water Air Soil Pollut 19:247–250.

    Article  CAS  Google Scholar 

  • Lehto (1994) Effects of soil pH and calcium on mycorrhizas of Picea abies. Plant Soil 163:69–75.

    CAS  Google Scholar 

  • Leone G, Van den Heuvel J (1986) Regulation by carbohydrates of the sequential in vitro production of pectic enzymes by Botrytus cinerea. Can J Bot 65:2133–2141.

    Article  Google Scholar 

  • Lettl A (1981a) Effect of some sulfur compounds on soil microflora of spruce rhizosphere. Folia Microbiol 26:243–252.

    Article  CAS  Google Scholar 

  • Lettl A (1981b) The effect of emissions on microbiology of the sulphur cycle. Commun Inst For Czech 12:27–50.

    Google Scholar 

  • Lettl A (1984) The effect of atmospheric SO2 pollution on the microflora of forest soils. Folia Microbiol 29:455–475.

    Article  CAS  Google Scholar 

  • Lettl A (1986) Biochemical activities of soil microflora in SO2 polluted forest stands. Folia Microbiol 31:220–227.

    Article  CAS  Google Scholar 

  • Levine ER, Ciolkosz EJ (1988) Computer simulation of soil sensitivity to acid rain. Soil Sci Soc Am J 52:209–215.

    Article  CAS  Google Scholar 

  • Likens GE, Borman FH (1974) Acid rain: a serious regional environmental problem. Science 184:1176–1179.

    Article  PubMed  CAS  Google Scholar 

  • Likens GE, Borman FH, Pierce AS, Eaton JS, Johnson NM (1977) Biogeochemistry of a Forested ecosystem. Springer-Verlag, New York.

    Google Scholar 

  • Lisker N, Katan J, Henis Y (1975) Sequential production of polygalacturonase, cellulase, and pectin lyase by Rhizoctonia solani. Can J Microbiol 21:1298–1304.

    Article  PubMed  CAS  Google Scholar 

  • Ljungholm K, Norén B, Wadsö I (1979) Microcalorimetric observations of microbial activity in normal and acidified soils. Oikos 33:24–30.

    Article  CAS  Google Scholar 

  • Lohm U, Lundkvist H, Persson T, Wiren A (1977) Effects of nitrogen fertilization on the abundance of enchytraeids and microarthropods in Scots pine forests. Stud For Suec 140:1–23.

    Google Scholar 

  • Lohm U (1980) Effects of experimental acidification on soil organism populations and decomposition. In: Drabloes D, Tollan A (eds) Ecological Impact of Acid Precipitation. Proceedings of an international conference. SNSF, Oslo, Norway, pp 178–179.

    Google Scholar 

  • Lohm U, Larsson K, Nômmik H (1984) Acidification and liming of coniferous forest soil: long-term effects on turnover rates of carbon and nitrogen during an incubation experiment. Soil Biol Biochem 16:343–346.

    Article  CAS  Google Scholar 

  • Loucks OL, Kuperman R (1991) Effects of drought stress on soil invertebrate communities in oak-hickory forests of the Ohio Corridor Pollution gradient. Ecological Society of America meetings, San Antonio, Texas, August 4–8, 1991.

    Google Scholar 

  • Loucks OL (1992) Forest response research in NAPAP: potentially successful linkage of policy and science. Ecol Appl 2:117–123.

    Article  Google Scholar 

  • Lundkvist H (1977) Effects of artificial acidification on the abundance of Enchytraeidae in a Scots pine forest in northern Sweden. Soil organisms as components of ecosystems. Ecol Bull (Stockholm) 25:570–572.

    CAS  Google Scholar 

  • Ma W-C (1982) The influence of soil properties and worm-related factors on the concentration of heavy metals in earthworms. Pedobiologia 24:109–119.

    CAS  Google Scholar 

  • Ma W-C, Edelman T, Beersum I van, Jans T (1983) Uptake of cadmium, zinc, lead, and copper by earthworms near a zinc-smelting complex: influence of soil pH and organic matter. Bull Environ Contam Toxicol 30:424–427.

    Article  PubMed  CAS  Google Scholar 

  • Ma W-C, Brussaard L, de Ridder JA (1990) Long-term effects of nitrogenous fertilizers on grassland earthworms (Oligochaeta: Lumbricidae): their relation to soil acidification. Agric Ecosyst Environ 30:71–80.

    Article  Google Scholar 

  • Mascari G, Ciardi C, Ceccanti B, Masciandaro G (1994) Biochemical study in a microcosm of a soil exposed to high levels of SO2. Geomicrobiol J 11:317–323.

    Article  Google Scholar 

  • Maclagan DS (1932) An ecological study on the “Lucerne flea” (Sminthurus viridis L.). Bull Entomol Res 23:101–145.

    Article  Google Scholar 

  • Mai H, Fiedler H J (1989) Model and field trials on the effect of SO2 on microorganisms in spruce raw humus. Zentralbl Mikrobiol 144:129–136.

    Google Scholar 

  • Mai H (1990) Soil-microbial investigations carried out in the ecological monitoring station in Tharandt Forest, Zenfralbl Mikrobiol 145:293–304.

    Google Scholar 

  • Mai H, Fiedler HJ (1990) The effect of artificial fumigation with SO2 on microorganisms in limed and unlimed raw humus from a spruce stand. Zentralbl Mikrobiol 145:157–163.

    Google Scholar 

  • Mancinelli RL (1986) Alpine tundra soil bacterial responses to increased soil loading rates of acid precipitation, nitrate, and sulfate. Front Range, Colorado, USA. Arct Alp Res 18:269–275.

    Article  Google Scholar 

  • Marschner B, Wilczynski AW (1991) The effect of liming on quantity and chemical composition of soil organic matter in a pine forest in Berlin, Germany. Plant Soil 137:229–236.

    Article  CAS  Google Scholar 

  • Marshall VG (1974) Seasonal and vertical distribution of soil fauna in a thinned and urea-fertilized Douglas fir forest. Can J Soil Sci 54:491–500.

    Article  CAS  Google Scholar 

  • Marshall VG (1977) Effects of manures and fertilizers on soil fauna: a review. Commonwealth Agricultural Bureau, England.

    Google Scholar 

  • Martikainen PJ (1985) Nitrification in forest soil of different pH as affected by urea, ammonium sulphate, and potassium sulphate. Soil Biol Biochem 17:363–367.

    Article  CAS  Google Scholar 

  • Martikainen PJ, Aarnio T, Taavitsainen V-M, Päivinen L, Salonen K (1989) Mineralization of carbon and nitrogen in soil samples taken from three fertilized pine stands: long-term effects. Plant Soil 114:99–106.

    Article  CAS  Google Scholar 

  • Martikainen PJ, Aarnio T, Yrjälä K (1990) Long-term effects of nitrogen additions on mineralization of carbon and nitrogen in forest soils. In: Brandon O, Hüttl RF (ed) Nitrogen Saturation in Forest Ecosystems. Kluwer, The Netherlands, pp 121–126.

    Google Scholar 

  • McAfee BJ, Fortin JA (1987) The influence of pH on the competitive interactions of ectomycorrhizal mycobionts under field conditions. Can J For Res 17:859–864.

    Article  Google Scholar 

  • McAndrew DW, Malhi SS (1992) Long-term N fertilization of a Solonetzic soil: effects on chemical and biological properties. Soil Biol Biochem 24:619–623.

    Article  Google Scholar 

  • McBrayer JF, Reichle DE, Auerbach SI (1970) Trophic level delineation of forest microinvertebrates. Tech manual #2847.Oak Ridge National Laboratory, Oak Ridge, TN.

    Google Scholar 

  • McColl JG, Firestone MK (1987) Cumulative effects of simulated acid rain on soil chemical and microbial characteristics and conifer seedling growth. Soil Sci Soc Am J 51:794–800.

    Article  CAS  Google Scholar 

  • McColl JG, Firestone MK (1991) Soil chemical and microbial effects of simulated acid rain on clover and chess. Water Air Soil Pollut 60:301–313.

    Article  CAS  Google Scholar 

  • McCool PM, Menge JA, Taylor OC (1979) Effects of ozone and HCl gas on the development of the myeorrhizal fungus Glomus fasciculatus and growth of ‘Troyer’ citrage. J Am Soc Hortic Sci 104:151–154.

    CAS  Google Scholar 

  • McGill WB, Hunt HW, Woodmansee RG, Reuss JO (1981) Ecol Bull (Stockholm) 33:49,

    CAS  Google Scholar 

  • McLeod AR (1988) Effects of open-air fumigation with sulphur dioxide on the occurrence of fungal pathogens in winter cereals. Phytopathology 78:88–94.

    Article  CAS  Google Scholar 

  • McQuattie CJ, Schier GA (1987) Effects of ozone and aluminum on pitch pine ectomycorrhizae. In: Sylvia DM, Hung LL, Graham (eds) Mycorrhizae in the Next Decade. Proceedings of the 7th NACOM, Gainesville, FL.

    Google Scholar 

  • Meier S, Robarge WP, Bruck RI, Grand LF (1989) Effects of simulated rain acidity on mycorrtiizae of red spruce seedlings potted in natural soils. Environ Pollut 59:314–315.

    Article  Google Scholar 

  • Meiwes KJ, Khanna PK (1981) Distribution and cycling of sulphur in the vegetation of two forest ecosystems in an acid rain environment. Plant Soil 60:369–375.

    Article  CAS  Google Scholar 

  • Melillo JM (1981) Nitrogen cycling in deciduous forests. In: Clark FE, Rosswall T (eds) Terrestrial Nitrogen Cycles. Ecol Bull 33:427–442.

    Google Scholar 

  • Mersi W von, Kuhnert-Finkernagel R, Schinner F (1992) The influence of rock powders on microbial activity of three forest soils. Z Pflanzenernähr Dueng Bodenkd 155:29–33.

    Google Scholar 

  • Mikola P (1973) Application of mycorrhizal symbiosis in forestry practice, in: Marks GC, Kozlowski TT (eds) Ectomycorrhizae: Their Ecology and Physiology. Academic Press, New York, pp 383–411.

    Google Scholar 

  • Miller KW, Cole MA, Banwart WL (1991) Microbial populations in an agronomically managed mollisol treated with simulated acid rain. J Environ Qual 20: 845–849.

    Article  Google Scholar 

  • Miller RM (1987) The ecology of vesicular-arbuscular mycorrhizae in grass- and shrublands. In: Safir GR (ed) Ecophysiology of VA Mycorrhizal Plants, CRC Press, Boca Raton, FL, pp 135–170.

    Google Scholar 

  • Mladenoff DJ (1987) Dynamics of nitrogen mineralization and nitrification in hemlock and hardwood treefall gaps. Ecology 68:1171–1180.

    Article  Google Scholar 

  • Modaihsh AS, Al-Mustafa WA, Metwally AI (1989) Effect of elemental sulphur on chemical changes and nutrient availability in calcareous soils. Plant Soil 116:95–101.

    Article  CAS  Google Scholar 

  • Mohren GMJ, Van Den Burg J, Burger FW (1986) Phosphorus deficiency induced by nitrogen input in Douglas fir in the Netherlands. Plant Soil 95:191–200.

    Article  CAS  Google Scholar 

  • Moloney KA, Stratton LJ, Klein RM (1983) Effects of simulated acidic, metal-containing precipitation on coniferous litter decomposition. Can J Bot 61:337–342.

    Article  Google Scholar 

  • Moore TR (1987) The effect of simulated acid rain on the nutrient status of subarctic woodland soils in eastern Canada. Can J For Res 17:370–378.

    Article  CAS  Google Scholar 

  • Mrkva R, Grunda B (1969) Einfluss von Immissionen auf die Waldboden und ihre Mikroflora im Gebiet von Sudmahren. Acta Univ Agric Fac Silvic (Brno) 38:247.

    Google Scholar 

  • Mulder EG, Brotonegoro S (1974) Free-living heterotrophic nitrogen-fixing bacteria. In: Quispel A (ed) The Biology of Nitrogen Fixation. Plenum Press, Amsterdam, pp 342–378.

    Google Scholar 

  • Munger JW, Eisenrich SJ (1983) Continental scale variations in precipitation chemistry. Environ Sci Technol 17:32A–42A.

    Article  CAS  Google Scholar 

  • Munns DH, Keyser HH (1981) Responses of Rhizobium strains to acid and aluminium stress. Soil Biol Biochem 13:115–118.

    Article  CAS  Google Scholar 

  • Myrold DD (1987) Effects of acidic deposition on soil organisms. In: Acidic deposition and forest soil biology. Tech Bull 527. NCASI, New York, pp 1–29.

    Google Scholar 

  • Myrold DD (1990) Effects of acidic deposition on soil organisms. In: Lucier AA, Haines SG (eds) Mechanisms of Forest Response to Acidic Deposition. Springer-Verlag, New York, pp 163–187.

    Google Scholar 

  • Myrold DD, Nason GE (1992) Effect of Acid Rain on Soil Microbial Processes. Environmental Microbiology. Wiley-Liss, New York, pp 59–81.

    Google Scholar 

  • Nahas E, Terenzi HF, Rossi A (1982) Effect of carbon source and pH on the production and secretion of acid phosphatase (EC.3.1.3.2) and alkaline phosphatase (EC.3.1.3.1) in Neurospora crassa. J Gen Microbiol 128:2017–2021.

    CAS  Google Scholar 

  • National Acid Precipiation Assessment Program (NAPAP) (1987) Interim assessment: the causes and effect of acidic deposition. Vol. 1: Executive Summary. National Acid Precipitation Assessment Program, CEQ, Washington, DC.

    Google Scholar 

  • NAPAP (1990) Deposition monitoring: methods and results. In: Sisterson DS, ed. Acidic Deposition: State of Science and Technology. NAPAP Rep 6, Washington, DC.

    Google Scholar 

  • Neuvonen S, Suomela J (1990) The effects of simulated acid rain on pine needle and birch leaf litter decomposition. J Appl Ecol 27:857–872.

    Article  Google Scholar 

  • Newsham KK, Frankland JC, Boddy L, Ineson P (1992a) Effects of dry-deposited sulfur dioxide on fungal decomposition of angiosperm tree leaf litter. I. Changes in communities of fungal saprotrophs. New Phytol 122:97–110.

    Article  CAS  Google Scholar 

  • Newsham KK, Frankland JC, Boddy L, Ineson P (1992b) Effects of dry-deposited sulfur dioxide on fungal decomposition of angiosperm tree leaf litter. II. Chemical content of leaf litters. New Phytol 122:111–125.

    Article  CAS  Google Scholar 

  • Newsham KK, Frankland JC, Boddy L, Ineson P (1992c) Effects of dry-deposited sulfur dioxide on fungal decomposition of angiosperm tree leaf litter. III. Decomposition rates and fungal respiration. New Phytol 122:127–140.

    Article  CAS  Google Scholar 

  • Newsham KK, Ineson P, Frankland JC (1995) The effects of open-air fumigation with sulfur dioxide on the decomposition of sycamore (Acer preudoplatanus L.) leaf litters from polluted and unpolluted woodlands. Plant Cell Environ 18:309–319.

    Article  CAS  Google Scholar 

  • Nilsson J, Grennfelt P (eds) (1988) Critical loads of sulphur and nitrogen. Nordic Council of Ministers, Copenhagen.

    Google Scholar 

  • Nilsson SI, Miller HG, Miller JD (1982) Forest growth as a possible cause of soil and water acidification: an examination of the concepts. Oikos 39:40–49.

    Article  Google Scholar 

  • Nodar R, Acea MJ, Carballas T (1992) Microbial response to Ca(OH)2 treatments in a forest soil. FEMS Microbiol Ecol 86:213–219.

    Article  CAS  Google Scholar 

  • Nohrstedt H-Ö (1985) Studies of forest floor biological activities in an area previously damaged by sulphur dioxide emissions. Water Air Soil Pollut 25:301–311.

    Article  CAS  Google Scholar 

  • Nohrstedt H-Ö (1988) Effects of liming and N-fertilization on denitrification and N2-fixation in an acid coniferous forest floor. For Ecol Manage 24:1–13.

    Article  Google Scholar 

  • Nohrstedt H-Ö, Arnebrant K, Bååth E, Söderström B (1989) Changes in carbon content, respiration rate, ATP content, and microbial biomass in nitrogen-fertilized pine forest soils in Sweden. Can J For Res 19:323–328.

    Article  Google Scholar 

  • Noordwijk MV, Hairiah K (1986) Mycorrhizal infection in relation to soil pH and soil phosphorus content in a rain forest of northern Sumatra. Plant Soil 96: 299–302.

    Article  Google Scholar 

  • Nylund J-E (1988) The regulation of mycorrhiza formation—carbohydrate and hormone theories reviewed. Scand J For Res 3:465–470.

    Article  Google Scholar 

  • Oelbe-Farivar M (1985) Physiologishe Reaktionen von Mykorrhizapilzen auf simulierte saure Bodenbedingungen. Ph.D thesis, University of Gottingen.

    Google Scholar 

  • Olson RA (1983) The impacts of acid deposition on N and S cycling. Environ Exp Bot 23:211–223.

    Article  CAS  Google Scholar 

  • Overrein L, Seip H, Tollan A (1981) Acid precipitation effects on forest and fish. Final report of the SNSF project 1972–1980. SNSF, Oslo, Norway.

    Google Scholar 

  • Padan E (1984) Adaptation of bacteria to external pH. In: Klug MJ, Reddy CA (eds) Current Perspectives in Microbial Ecology. American Society for Microbiology, Washington, DC, pp 49–54.

    Google Scholar 

  • Persley AF, Page OT (1971) Differential induction of pectolytic enzymes of Fusarium roseum (Lk.) emend. Snyder and Hanses. Can J Microbiol 17:415–420.

    Article  Google Scholar 

  • Persson T (1983) In: Lebrun PH, et al. (eds) New Trends in Soil Biology. Proceedings, VIII International Colloquium on Soil and Zoology, p 117.

    Google Scholar 

  • Persson T, Lundkvist H, Wirén A, Hyvönen R, Wessén B (1989) Effects of acidification and liming on carbon and nitrogen mineralization and soil organisms in moor humus. Water Air Soil Pollut 45:77–96.

    CAS  Google Scholar 

  • Phaff H J (1947) The production of exocellular pectic enzymes by penicillium chrysogenum. I. On the formation and adaptive nature of polygalacturonase and pectin esterase. Arch Biochem 13:67–81.

    PubMed  CAS  Google Scholar 

  • Placet M (1991) Emissions involved in acidic deposition processes. Rep 1. NAPAP State of Science and Technology. NAPAP, Washington, DC.

    Google Scholar 

  • Popovic B (1984) Mineralization of carbon and nitrogen in humus from field acidification studies. For Ecol Manage 8:31–93.

    Article  Google Scholar 

  • Postel S (1984) Air pollution, acid rain, and the future of forests. Paper #58. Worldwatch Institute, Washington, DC.

    Google Scholar 

  • Potter DA, Bridges BL, Gordon FC (1985) Effect of N fertilization on earthworm and microarthropod populations in Kentucky bluegrass turf. Agron J 77:367–372.

    Article  Google Scholar 

  • Prescott CE, Bewley RJF, Parkinson D (1984) Litter decomposition and soil microbial activity in a forest receiving SO2 pollution. In: Stone EL (ed) Forest Soils and Treatment Impacts. University of Tennessee, Knoxville, p 448.

    Google Scholar 

  • Prescott CE, Parkinson D (1985) Effects of sulfur pollution on rates of litter decomposition in a pine forest. Can J Bot 63:1436–1443.

    Article  CAS  Google Scholar 

  • Prescott CE (1995) Does nitrogen availability control rates of Utter decomposition in forests? Plant Soil 168–169:83–88.

    Google Scholar 

  • Priha O, Smolander A (1994) Fumigation-extraction and substrate-induced respiration derived microbial biomass C, and respiration rate in limed soil of Scots pine sapling stands. Biol Fertil Soils 17:301–308.

    Article  CAS  Google Scholar 

  • Quimet R, Camiré C, Furlan V (1995) Endomycorrhizal status of sugar maple in relation to tree decline and foliar, fine-roots, and soil chemistry in the Beauce region, Quebec. Can J Bot 73:1168–1175.

    Article  Google Scholar 

  • Raw F (1959) Earthworms population studies: a comparison of sampling methods. Nature 187:257.

    Article  Google Scholar 

  • Reddy GB, Reinert RA, Eason G (1991) Enzymatic changes in the rhizosphere of loblolly pine exposed to ozone and acid rain. Soil Biol Biochem 23:1115–1119.

    Article  CAS  Google Scholar 

  • Reich PB, Schoettle AW, Stroo HF, Troiano J, Amundson RG (1985) Effects of O3 SO2, and acid rain on mycorrhizal infection in northern red oak seedlings. Can J Bot 63:2049–2055.

    CAS  Google Scholar 

  • Reich PB, Schoettle AW, Stroo HF, Amundson RG (1986) Acid rain and ozone influence mycorrhizal infection in tree seedlings. J Air Pollut Control Assoc 36: 724–726.

    CAS  Google Scholar 

  • Reich PB, Schoettle AW, Stroo HF, Amundson RG (1988) Effects of ozone and acid rain on white pine (Pinus strobus) seedlings growth in five soils. III. Nutrient relations. Can J Bot 66(8): 1517–1531.

    Article  CAS  Google Scholar 

  • Reynolds JW (1971) The effects of altitude, soil moisture, and soil acidity on earthworm (Oligochaeta: Acanthodrilidae and Lumbricidae) density, biomass, and species diversification in Liriodendron tulipifera L. stands in two areas of east Tennessee. Tenn Assoc Southeast Biol Bull 18:52.

    Google Scholar 

  • Rice PM, Pye LH, Boldi R, O’Loughlin J, Tourangeau PC, Gordon CC (1979) The effects of “low level SO2” exposure of sulfur accumulation and various plant life responses of some major grassland species on the ZAPS sites. In: Colstrip MT, Preston M, Gullett TL (eds) Bioenvironmental impact of coal-fired power plant. 4th interim report. U.S. Environmental Protection Agency, Alexandria, VA.

    Google Scholar 

  • Richards BN (1965) Mycorrhiza development of loblolly pine seedlings in relation to soil reaction and supply of nitrate. Plant Soil 22:187–199.

    Article  Google Scholar 

  • Rida M, Modaihsh AS (1988) Gypsum formation in sulphur treated calcareous soils. Arab Gulf J Sci Res (unpublished data). [As cited in Modaihsh et al. (1989)].

    Google Scholar 

  • Roberts TM, Clarke TA, Ineson P, Grey TR (1980) Effects of sulphur deposition and nutrient leaching in coniferous forest soil. In: Hutchinson TC, Havas M (eds) Effects of Acidic Precipitation on Terrestrial Ecosystems. NATO Conference Series 1, Vol.4. Plenum Press, New York, pp 381–393.

    Google Scholar 

  • Rochelle BP, Church MR, David MB (1987) Sulfur retention at intensively studied sites in the U.S. and Canada. Water Air Soil Pollut 33:73–83.

    Article  CAS  Google Scholar 

  • Rodale R (1948) Do chemical fertilizers kill earthworms? Org Garden 12:12–17.

    Google Scholar 

  • Rodhe H, Granat L (1984) An evaluation of sulfate in European precipitation 1955–1982. Atmos Environ 18:2627–2639.

    Article  CAS  Google Scholar 

  • Rudawska M (1986) Sugar metabolism of ectomycorrhizal Scots pine seedlings as influenced by different nitrogen forms and levels. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Mycorrhizae: Physiology and Genetics. (Proceedings, 1st European Symposium on Mycorrhizae, Dijon, 1985. CNRS-INRA, Dijon, pp 389–394.

    Google Scholar 

  • Ruess L, Funke W (1992) Effects of experimental acidification on nematode populations in soil cultures. Pedobiologia 36:231–239.

    Google Scholar 

  • Rühling Å, Tyler G (1991) Effects of simulated nitrogen deposition to the forest floor on the macrofungal flora of a beech forest. Ambio 20:261–263.

    Google Scholar 

  • Saggar S, Bettany JR, Stewart JW (1981) Measurement of microbial sulfur in soil. Soil Biol Biochem 13:493–498.

    Article  CAS  Google Scholar 

  • Salonius PO (1990) Respiration rates in forest soil organic horizon materials treated with simulated acid rain. Can J For Res 20:910–913.

    Article  CAS  Google Scholar 

  • Satchell R (1955) Some aspects of earthworm ecology. In: Kevan DKMcE (ed) Soil Zoology. Butterworths, London, pp 180–201.

    Google Scholar 

  • Schauermann J (1985) Zur Reaktion von Bodentieren nach Düngung von Hainsimsen-Buchenwäldern und Siebenstern-Fichtenforsten im Soiling. Allg Forstzeitschr 43:1159–1160.

    Google Scholar 

  • Schmidt J, Seiler W, Conrad R (1988) Emissions of nitrous oxide from temperate forest soils into the atmosphere. J Atmos Chem 6:95–115.

    Article  CAS  Google Scholar 

  • Shafer SR, Grand LF, Brack RI, Heagle AS (1985) Formation of ecto-mycorrhizae on Pinus taeda seedlings exposed to simulated acid rain. Can J For Res 15:66–71.

    Article  Google Scholar 

  • Shafer SR (1988) Influence of ozone and simulated acidic rain on microorganisms in the rhizosphere of Sorghum. Environ Pollut 51:131–152.

    Article  PubMed  CAS  Google Scholar 

  • Shafer SR (1992) Responses of microbial populations in the rhizosphere to deposition of simulated acidic rain onto foliage and/or soil. Environ Pollut 76:267–278.

    Article  PubMed  CAS  Google Scholar 

  • Shah Z, Adams WA, Haven CDV (1990) Composition and activity of the microbial population in an acidic upland soil and effects of liming. Soil Biol Biochem 22: 257–263.

    Article  Google Scholar 

  • Shannon JD, Sislerson DL (1992) Estimation of S and NOx-N deposition budgets for the United States and Canada. Water Air Soil Pollut 63:211–235.

    Article  CAS  Google Scholar 

  • Shriner DS (1977) Effects of simulated rain acidified with sulfuric acid on host-parasite interactions. Water Air Soil Pollut 8:9–14.

    CAS  Google Scholar 

  • Shriner DS, Henderson GS (1978) Sulfur distribution and cycling in a deciduous forest watershed. J Environ Qual 7:392–397.

    Article  CAS  Google Scholar 

  • Smolander A, Kurka A, Kitunen V, Mälkönen E (1994) Microbial biomass C and N in limed soil of Norway spruce stands. Soil Biol Biochem 26:503–509.

    Article  Google Scholar 

  • Smolander A, Mälkönen E (1994) Microbial biomass C and N, and respiratory activity in soil of repeatedly limed and N- and P-fertilized Norway spruce stands. Soil Biol Biochem 26:957–962.

    Article  Google Scholar 

  • Sohlenius B, Wasilewska L (1984) Influence of irrigation and fertilization on the nematode community in a Swedish pine forest soil. J Appl Ecol 21:327–342.

    Article  Google Scholar 

  • Sohlenius B, Bostrom S (1986) Short-term dynamics of nematode communities in arable soil—influence of nitrogen fertilization in barley crops. Pedobiologia 29: 183–191.

    Google Scholar 

  • Speir TW, Ross DJ (1981) A comparison of the effects of air-drying and acetone dehydration on soil enzyme activities. Soil Biol Biochem 13:225–229.

    Article  CAS  Google Scholar 

  • Stanis AJM, Booltink HWG, Lutke-Schipholt IJ, Beemsterboer B, Woittiez JRW, Van Breemen N (1991) A field study on the fate of 15N-ammonium to demonstrate nitrification of atmospheric ammonium in an acid forest soil. Biogeochemistry (Dordrecht) 13:241–255.

    Google Scholar 

  • Standen V (1984) Production and diversity of enchytraeids, earthworms and plants in fertilized hay meadow plots. J Appl Ecol 21:293–312.

    Article  Google Scholar 

  • Stanko KM, Fitzgerald JM (1990) Sulfur transformations in forest soils collected along an elevational gradient. Soil Biol Biochem 22:213–216.

    Article  CAS  Google Scholar 

  • Steiner WA (1994) The influence of air pollution on moss-dwelling animals. 2. Aquatic fauna with emphasis on Nematoda and Tardigrada. Rev Suisse Zool 101(3):699–724.

    Google Scholar 

  • Steiner WA (1995) The influence of air pollution on moss-dwelling animals: 5. Fumigation experiments with SO2 and exposure experiments. Rev Suisse Zool 102(1): 13–40.

    Google Scholar 

  • Stevens PA, Wannop CP (1987) Dissolved organic nitrogen and nitrate in an acid forest soil Plant Soil 102:137–139.

    Article  CAS  Google Scholar 

  • Stevenson FJ (1986) The sulfur cycle. In: Cycles of Soils. Wiley, New York, pp 285–320.

    Google Scholar 

  • Stinner DH, Stinner BR, McCartney DA (1987) Effects of simulated acidic precipitation on soil-inhabiting invertebrates in corn systems. In: Bartuska A (ed) Proceedings of National Atmospheric Conference. USDA, Washington, DC, pp. 198–206.

    Google Scholar 

  • Straalen NM van, Geurs M, Linden JM van der (1987) Abundance, pH preference and mineral content of Oribatida and Collembola in relation to vitality of pine forests in the Netherlands. In: Perry R, Harrison RM, Bell JNB, Lester JN (eds) Acid Rain: Scientific and Technical Advances. Selper, London, pp 674–679.

    Google Scholar 

  • Straalen NM van, Kraak MHS, Denneman CAJ (1988) Soil microarthropods as indicators of soil acidification and forest decline in the Veluwe area, the Netherlands. Pedobiologia 32:47–55.

    Google Scholar 

  • Strayer RF, Lin C-J, Alexander M (1981) Effect of simulated acid rain on nitrification and nitrogen mineralization in forest soils. J Environ Qual 10:547–551.

    Article  CAS  Google Scholar 

  • Streeter J (1989) Inhibition of legume nodule formation and N2 fixation by nitrate. CRC Crit Rev Plant Sci 7:1–23.

    Article  Google Scholar 

  • Stroo HF, Alexander M (1985) Effects of simulated acid rain on mycorrhizal infection of Pinus strobus L. Water Air Soil Pollut 25:107–114.

    Article  CAS  Google Scholar 

  • Stroo HF, Alexander M (1986a) Available nitrogen and nitrogen cycling in forest soils exposed to simulated acid rain. Soil Sci Soc Am J 50:110–114.

    Article  CAS  Google Scholar 

  • Stroo HF, Alexander M (1986b) Role of soil organic matter in the effect of acid rain on nitrogen mineralization. Soil Sci Soc Am J 50:1218–1223.

    Google Scholar 

  • Struwe S, Kjøller A (1994) Potential for N2O production from beech (Fagus silvaticus) forest soils with varying pH. Soil Biol Biochem 26:1003–1009.

    Article  CAS  Google Scholar 

  • Swank WT, Douglass JE (1977) Nutrient budgets of undisturbed and manipulated hardwood forest ecosystems in the mountains of North Carolina. In: Correll DL (ed) Watershed Research in North America. Smithsonian Institution Press, Washington, DC, pp 343–363.

    Google Scholar 

  • Tabatabai M A, Bremner JM (1970) Factors affecting soil arylsulfatase activity. Soil Sci Soc Am Proc 34:427–429.

    Article  CAS  Google Scholar 

  • Tabatabai MA (1985) Effect of acid rain on soil. CRC Crit Rev Environ Control 15:65–110.

    Article  CAS  Google Scholar 

  • Tamm CO (1976) Acidic precipitation: biological effects in soil and on forest vegetation. Ambio 5:235–238.

    CAS  Google Scholar 

  • Tamm CO, Wiklander G, Porović B (1977) Water Air Soil Pollut 8:75.

    CAS  Google Scholar 

  • Tate KR (1984) The biological transformation of P in soil. Plant Soil 76:245–256.

    Article  CAS  Google Scholar 

  • Termorshuizen AJ, Ket PC (1991) Effects of ammonium and nitrate on mycorrhizal seedlings of Pinus sylvestris. Eur J For Path 21:404–413.

    Article  Google Scholar 

  • Téreault JP, Bernier B, Fortin JA (1978) Mitrogen fertilization and mycorrhizae of balsam fir seedlings in natural stands. Nat Can (Ott) 105:461–466.

    Google Scholar 

  • Theenhaus A, Schaefer M (1995) The effects of clear-cutting and liming on the soil macrofauna of a beech forest. For Ecol Manage 77:35–51.

    Article  Google Scholar 

  • Theodorou C, Bowen GD (1969) Influence of pH and nitrate on mycorrhizal associations of Pinus radiata D. Don. Aust J Bot 17:59–67.

    Article  Google Scholar 

  • Thompson GW, Medve RJ (1984) Effects of aluminum and manganese on the growth of ectomycorrhizal fungi. Appi Environ Microbiol 48:556–560.

    CAS  Google Scholar 

  • Tishler W (1955) Effect of agricultural practice on the soil fauna. In: Kevan DKMcE (ed) Soil Zoology. Butterworths, London, pp 215–230.

    Google Scholar 

  • Titus BD, Malcolm DC (1987) The effect of fertilization on litter decomposition in clearfelled spruce stands. Plant Soil 100:297–322.

    Article  Google Scholar 

  • Tuttobello R, Mill PJ (1961) The pectic enzymes of Aspergillus niger. 1. The production of active mixtures of pectic enzymes. Biochem J 79:51–57.

    PubMed  CAS  Google Scholar 

  • Ulrich B, Pankrath J (eds) (1983) Effects of Accumulation of Air Pollutants in Forest Ecosystems. Reidel, Boston.

    Google Scholar 

  • Valovirta I (1968) Land molluscs in relation to acidity on hyperite hills in central Finland. Ann Zool Fenn 5:245–253.

    Google Scholar 

  • van Breemen N, Burrough PA, Velthorst EJ, van Dobben HF, de Wit T, Ridder TB, Reijnders HFR (1982) Soil acidification from atmospheric ammonium sulphate in forest canopy throughfall. Nature 299:548–550.

    Article  Google Scholar 

  • Van den Burg J (1976) The influence of nitrogen content of the organic matter in sandy soils without calcium on growth of coniferous species, in dependence of the phosphate and water availability. Internal report 87. Research Institute for Forestry and Landscape Planning ‘De Dorschkamp’.

    Google Scholar 

  • vanLoon GW (1984) Acid rain and soil Can J Physiol Pharmacol 62:991–997.

    Article  PubMed  CAS  Google Scholar 

  • vanLoon GW, Hay GW, Goh RH-T (1987) Analysis of sulfur-containing components of a soil treated with simulated acid rain. Water Air Soil Pollut 34:233–2411.

    Article  CAS  Google Scholar 

  • Verhoef HA, Dorel FG, Zoomer HR (1989) Effects of nitrogen deposition on animal-mediated nitrogen mobilization in coniferous litter. Biol Fertil Soils 8: 225–259.

    Article  Google Scholar 

  • Vilkamaa P, Huhta V (1986) Effects of fertilization and pH on communities of Collembola in pine forest soil. Ann Zool Fenn 23:167–174.

    Google Scholar 

  • Vincent JM (1974) Root-nodule symbiosis with Rhizobium. In: Quispel A (ed) The Biology of Nitrogen Fixation. Plenum Press, Amsterdam, pp 342–378.

    Google Scholar 

  • Visser S, Danielson RM, Parr JF (1987) Effects of acid-forming emissions on soil microorganisms and microbially-mediated processes. ADRP-B-02-087. Acid Deposition Research Program, Calgary, Alberta, Canada.

    Google Scholar 

  • Visser S, Parkinson D (1989) Microbial respiration and biomass in soil of a lodge-pole pine stand acidified with elemental sulfur. Can. J For Res 19:955–961.

    Article  CAS  Google Scholar 

  • Voelker J (1959) Der chemishe Einfluss von Kalziumkarbonat auf Wachstum, Entwicklung und Gehäusebam von Achatina fulica Bowd. (Pulmonata). Mitt Hambg Zool Mus Inst 57:37–78.

    CAS  Google Scholar 

  • Voigh GK (1980) Acid precipitation and soil buffering capacity. In: Drablos D, Tollan A (eds) Ecological Impact of Acid Precipitation. Proceedings of an International Conference, Sandefjord, Norway, March 11–14. SNSF Project, Olso, Norway, pp 53–57.

    Google Scholar 

  • von Lützov M, Zelles L, Scheunert I, Ottow JCG (1992) Seasonal effects of liming, irrigation, and acid precipitation on microbial biomass N in spruce (Picea abies L.) forest soil. Biol Fertil Soil 13:130–134.

    Google Scholar 

  • Waide JB, Swank WT (1987) Patterns and trends in precipitation and stream chemistry at the Coweeta Hydrologic Laboratory. In: Aquatic Effects Task Group VI Peer Review Summaries, Vol. II. North Carolina State University Atmospheric Impacts Research Program, Raleigh, pp 421–430.

    Google Scholar 

  • Wainwright M (1979) Microbial S-oxidation in soils exposed to heavy atmospheric pollution. Soil Biol Biochem 11:95–98.

    Article  CAS  Google Scholar 

  • Wainwright M (1980) Effect of exposure to atmospheric pollution on microbial activity in soil. Plant Soil 55:199–204.

    Article  CAS  Google Scholar 

  • Wainwright M, Nevell W (1984) Microbial transformations of sulphur in atmospheric-polluted soils. Rev Environ Health 4:339–356.

    PubMed  CAS  Google Scholar 

  • Waldén HW (1981) Communities and diversity of land molluscs in Scandinavian woodlands. 1. High diversity communities in taluses and boulder slopes in SW Sweden. J Conchol 30:351–372.

    Google Scholar 

  • Walker RF (1989) Pisolithus tinctorius, a Gasteromycete, associated with Jeffrey and Sierra lodgepole pines on acid mine spoils in the Sierra Nevada. Great Basin Nat 49:111–112.

    Google Scholar 

  • Walker RF, McLaughlin SB (1991) Growth and root system development of white oak and loblolly pine as affected by simulated acidic precipitation and ectomycorrhizal inoculation. For Ecol Manage 46:123–133.

    Article  Google Scholar 

  • Wallander H, Nylund J-E (1991) Effects of excess nitrogen on carbohydrate concentrations and mycorrhizal development of Pinus sylvestris L. seedlings. New Phytol 119:405–411.

    Article  CAS  Google Scholar 

  • Wallander H, Nylund J-E (1992) Effects of excess nitrogen and phosphorus starvation on the extramatrical mycelium of ectomycorrhizas of Pinus sylvestris L. New Phytol 120:495–503.

    Article  CAS  Google Scholar 

  • Wallwork JA (1967) Acari. In: Burges A, Raw F (eds) Soil Biology. Academic Press, New York, pp 363–395.

    Google Scholar 

  • Wallwork JA (1970) Ecology of Soil Animals. McGraw-Hill, New York.

    Google Scholar 

  • Wang WC, Yung YL, Lacis AA, Mo T, Hansen JE (1976) Greenhouse effects due to man-made perturbations of trace gases. Science 194:685–690.

    Article  PubMed  CAS  Google Scholar 

  • Wäreborn I (1979) Reproduction of two species of land snails in relation to calcium salts in the foerna layer. Malacologia 18:177–180.

    Google Scholar 

  • Wäreborn I (1982) Environments and molluscs in a non-calcareous forest area in southern Sweden. Dissertation, University of Lund.

    Google Scholar 

  • Wäreborn I (1992) Changes in the land mollusc fauna and soil chemistry in an inland district in southern Sweden. Ecography 15:62–69.

    Article  Google Scholar 

  • Wästerlund I (1982) Försvinner tallens mykorrhizasvampar vid gödsling? Sven Bot Tidskr 76:411–417.

    Google Scholar 

  • Watson AP, Van Hook RI, Jackson DR, Reichle DE (1976) Impact of a lead mining-smelting complex on the forest-floor litter arthropod fauna in the new lead belt region of southeast Missouri. ERD #881. Oak Ridge National Laboratory, Oak Ridge, TN.

    Google Scholar 

  • Weller DE, Peterjohn WT, Goff NM, Correll DL (1986) Ion and acid budgets for a forested Atlantic coastal plain watershed and their implications for the impacts of acid deposition. In: Watershed Research Perspectives. Smithsonian Institution Press, Washington, DC, pp 392–421.

    Google Scholar 

  • Whelpdale DM, Barrie LA (1982) Atmospheric monitoring network operations and results in Canada. Water Air Soil Pollut 18:7–23.

    Article  CAS  Google Scholar 

  • Wilhelmi V, Rother GM (1990) The effect of acid rain, soil temperature and humidity on C-mineralization rates in organic soil layers under spruce. Plant Soil 121: 197–202.

    Article  Google Scholar 

  • Will ME, Graetz DA, Roof BS (1986) Effect of acid precipitation on soil microbial activity in a Typic Quartzipsamrnent. J Environ Qual 15:399–402.

    Article  CAS  Google Scholar 

  • Williams BL (1983) Nitrogen transformations and decomposition in litter and humus from beneath closed-canopy Sitka spruce. Forestry (Oxford) 56:17–32.

    Google Scholar 

  • Williams ML, Atkins DHF, Bower JS, Campbell GW, Irwin JG, Simpson D (1989) A preliminary assessment of the air pollution climate of the UK. Rep LR 723 (AP). Warren Spring Laboratory, Stevenage, UK.

    Google Scholar 

  • Williams RS (1988) Effect of dilute acid on the accelerated weathering of wood. J Air Pollut Control Assoc 38:148–151.

    CAS  Google Scholar 

  • Wisniewski J, Keitz EL (1983) Acid rain deposition patterns in the continental United States. Water Air Soil Pollut 19:327–339.

    CAS  Google Scholar 

  • Wodzinski RS, Labeda DP, Alexander M (1978) Effects of low concentrations of bisulfite-sulfite and nitrite on microorganisms. Appl Environ Microbiol 35:718–723,

    PubMed  CAS  Google Scholar 

  • Wood M (1986) Aluminum toxicity to rhizobia. In: Meguśar F, Gantar M (eds) Perspectives in Microbial Ecology. Slovene Society for Microbiology, Ljubljana, pp 659–663.

    Google Scholar 

  • Wood M, Cooper JE (1988) Acidity, aluminium and multiplication of Rhizobium trifolli: effects of initial inoculum density and growth phase. Soil Biol Biochem 20:83–87.

    Article  CAS  Google Scholar 

  • Wookey PA (1988) Effects of dry-deposited sulphur dioxide on the decomposition of forest leaf litter. Ph.D. thesis, University of Lancaster, UK.

    Google Scholar 

  • Wookey PA, Ineson P, Mansfield TA (1990) Effects of atmospheric sulfur dioxide on microbial activity in decomposing forest litter. Agric Ecosyst Environ 33:263–280.

    Article  Google Scholar 

  • Xian X, Shokohifard GI (1989) Effect of pH on chemical forms and plant availability of cadmium, zinc, and lead in polluted soils. Water Air Soil Pollut 45:265–273.

    Article  CAS  Google Scholar 

  • Zajonc I (1975) Variations in meadow associations of earthworms caused by the influence of nitrogenous fertilizers and liquid-manure irrigation. In: Vanek J (ed) Progress in Soil Zoology. Academia, Prague, pp 497–503.

    Google Scholar 

  • Žel J, Gogala N (1990) Physiol Plant 79:A133.

    Google Scholar 

  • Žel J, Blatnic A, Gogala N (1992) In vitro aluminum effects on ectomycorrhizal fungi. Water Air Soil Pollut 63:145–153.

    Article  Google Scholar 

  • Zelles L, Scheunert I, Kreutzer K (1987a) Effects of artificial irrigation, acid precipitation and liming on the microbial activity in soil of a spruce forest. Biol Fertil Soil 4:137–143.

    Article  Google Scholar 

  • Zelles L, Scheunert I, Kreutzer K (1987b) Bioactivity in limed soil of a spruce forest. Biol Fertil Soil 3:211–216.

    Article  CAS  Google Scholar 

  • Zelles L, Stepper K, Zsolnay A (1990) The effect of lime on microbial activity in spruce (Picea abies L.) forests. Biol Fertil Soil 9:78–82.

    Article  CAS  Google Scholar 

  • Zemba SG, Golomb D, Fay JA (1988) Wet sulfate and nitrate deposition patterns in eastern North America. Atmos Environ 22(12):2751–2761.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Kuperman, R.G., Edwards, C.A. (1997). Effects of Acidic Deposition on Soil Invertebrates and Microorganisms. In: Ware, G.W., Nigg, H.N., Bevenue, A. (eds) Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, vol 148. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2264-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2264-4_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7478-0

  • Online ISBN: 978-1-4612-2264-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics