Skip to main content

A Multi-level Model for Recognition of Intonation Labels

  • Chapter
Computing Prosody

Abstract

Prosodic patterns can be an important source of information for interpreting an utterance, but because the suprasegmental nature poses a challenge to computational modelling, prosody has seen limited use in automatic speech understanding. This work describes a new computational model of prosody aimed at recognizing detailed intonation patterns, both pitch accent and phrase boundary location and their specific tonal markers, using a multi-level representation to capture acoustic feature dependence at different time scales. The model assumes that an utterance is a sequence of phrases, each of which is composed of a sequence of syllable-level tone labels, which are in turn realized as a sequence of acoustic feature vectors (fundamental frequency and energy) depending in part on the segmental composition of the syllable. The variable lengths are explicitly modelled in a probabilistic representation of the complete sequence, using a dynamical system model at the syllable level that builds on existing models of intonation. Recognition and training algorithms are described, and initial experimental results are reported for prosodic labelling of radio news speech.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Anderson, J. Pierrehumbert, and M. Liberman. Synthesis by rule of English intonation patterns. In Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, pp. 2.8.1–2.8.4, 1984.

    Google Scholar 

  2. M. Beckman. The parsing of prosody. Language and Cognitive Processes, 1996.

    Google Scholar 

  3. J. Butzberger, M. Ostendorf, P. Price, and S. Shattuck-Hufnagel. Isolated word intonation recognition using hidden Markov models. In Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, pp. 773–776, 1990.

    Chapter  Google Scholar 

  4. M. Beckman and J. Pierrehumbert. Intonational structure in Japanese and English. In J. Ohala, editor, Phonology Yearbook 3, pp. 255–309. New York: Academic, 1986.

    Google Scholar 

  5. W. N. Campbell. Syllable-based segmental duration. In G. Bailly, C. Benoît, and T. R. Sawallis, editors, Talking Machines: Theories, Models, and Designs, pp. 211–224. Amsterdam: Elsevier Science, 1992.

    Google Scholar 

  6. W. N. Campbell. Automatic detection of prosodic boundaries in speech. Speech Communication, 13:343–354, 1993.

    Article  Google Scholar 

  7. W. N. Campbell. Combining the use of duration and F0 in an automatic analysis of dialogue prosody. In Proceedings of the International Conference on Spoken Language Processing, Yokohama, Japan, Vol. 3, pp. 1111–1114, 1994.

    Google Scholar 

  8. W. N. Campbell and S. D. Isard. Segment durations in a syllabic frame. Journal of Phonetics, 47:19:37, 1991.

    Google Scholar 

  9. F. Chen and M. Withgott. The use of emphasis to automatically summarize a spoken discourse. In Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, Vol. 1, pp. 229–232, 1992.

    Google Scholar 

  10. A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 37:1–38, 1977.

    MathSciNet  Google Scholar 

  11. V. Digalakis, J. R. Rohlicek, and M. Ostendorf. ML estimation of a stochastic linear system with the EM algorithm and its application to speech recognition. IEEE Trans, on Speech and Audio Processing, 1:431–442, 1993.

    Article  Google Scholar 

  12. H. Fujisaki and H. Kawai. Realization of linguistic information in the voice fundamental frequency contour. Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, pp. 663–666, 1988.

    Google Scholar 

  13. E. Geoffrois. A pitch contour analysis guided by prosodic event detection. Proceedings of the European Conference on Speech Communication and Technology, Berlin, Germany, pp. 793–796, 1993.

    Google Scholar 

  14. K. Hirose and H. Fujisaki. Analysis and synthesis of voice fundamental frequency contours of spoken sentences. In Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, pp. 950–953, 1982.

    Google Scholar 

  15. T. Hirai, N. Higuchi, and Y. Sagisaka. A study of a scale for automatic prediction of prosodie phrase boundary based on the distribution of parameters from a critical damping model. Proceedings Spring Meeting, Acoustics Soc. Jpn, I:315–316, 1995 (in Japanese).

    Google Scholar 

  16. J. Hirschberg. Pitch accent in context: Predicting prominence from text. Artificial Intelligence, 63:305–340, 1993.

    Article  Google Scholar 

  17. D. Huber. A statistical approach to the segmentation and broad classification of continuous speech into phrase-sized information units. In Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, pp. 600–603, 1989.

    Chapter  Google Scholar 

  18. U. Jensen, R. Moore, P. Dalsgaard, and B. Lindberg. Modelling of intonation contours at the sentence level using CHMMs and the 1961 O’Connor and Arnold scheme. Proceedings of the European Conference on Speech Communication and Technology, Berlin, Germany, pp. 785–788, 1993.

    Google Scholar 

  19. R. Kompe, A. Batliner, A. Kießling, U. Kilian, H. Niemann, E. Nöth, and P. Regel-Brietzmann. Automatic classification of prosodically marked boundaries in German. Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, 2:173–176, 1994.

    Google Scholar 

  20. A. Ljolje and F. Fallside. Recognition of isolated prosodie patterns using hidden Markov models. Computer Speech and Language, 2:27–33, 1987.

    Article  Google Scholar 

  21. D. Macanucco. Automatic recognition of prosodie patterns, unpublished Boston University course report, 1994.

    Google Scholar 

  22. M. Nakai, H. Singer, Y. Sagisaka, and H. Shimodaira. Automatic prosodie segmentation by Æ’0 clustering using superposition modelling. In Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, 1995.

    Google Scholar 

  23. M. Ostendorf, V. Digalakis, and O. Kimball. From HMMs to segment models: A unified view of stochastic modelling for speech recognition. IEEE Trans, on Acoustics Speech and Signal Processing, 1990.

    Google Scholar 

  24. M. Ostendorf, A. Kannan, S. Austin, 0. Kimball, R. Schwartz, and J. R. Rohlicek. Integration of diverse recognition methodologies through reevaluation of N-best sentence hypotheses. Proceedings of the DARPA Workshop on Speech and Natural Language, pp. 83–87, 1991.

    Chapter  Google Scholar 

  25. M. Ostendorf, P. J. Price, and S. Shattuck-Hufnagel. The Boston University Radio News Corpus. Technical Report ECS- 95–001, Boston University ECS Dept., 1995.

    Google Scholar 

  26. M. Ostendorf and S. Roukos. A stochastic segment model for phoneme-based continuous speech recognition. IEEE Trans, on Acoustics, Speech, and Signal Processing, 37:1857–1869, 1989.

    Article  Google Scholar 

  27. M. Ostendorf, N. Veilleux, M. Hendrix, and D. Macannuco. Linking speech and language processing through prosody. J. Acoustics Soc. Am., 95:2947, 1994.

    Article  ADS  Google Scholar 

  28. K. Ross and M. Ostendorf. A dynamical system model for generating F 0 for synthesis. Proceedings of the ESC A/IEEE Workshop on Speech Synthesis, Mohonk, NY, pp. 131–134, 1994.

    Google Scholar 

  29. K. Ross and M. Ostendorf. Prediction of abstract prosodie labels for speech synthesis. Computer, Speech and Language, 1996.

    Google Scholar 

  30. K. Silverman, M. Beckman, J. Pitrelli, M. Ostendorf, C. Wightman, P. Price, J. Pierrehumbert, and J. Hirschberg. ToBI: A standard for labelling English prosody. In Proceedings of the International Conference on Spoken Language Processing, Banff, Canada, Vol. 2, pp. 867–870, 1992.

    Google Scholar 

  31. K. E. A. Silverman. The structure and processing of fundamental frequency contours. Ph.D. thesis, University of Cambridge, 1987.

    Google Scholar 

  32. L. ten Bosch. On the automatic classification of pitch movements. Proceedings of the European Conference on Speech Communication and Technology, Berlin, Germany, pp. 781–784, 1993.

    Google Scholar 

  33. N. Veilleux and M. Ostendorf. Probabilistic parse scoring with prosodic information. In Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, Vol. II, pp. 51–54, 1993.

    Article  Google Scholar 

  34. J. P. H. van Santen. Assignment of segmental duration in text- to-speech synthesis. Computer Speech and Language, 8:95–128, 1994.

    Article  Google Scholar 

  35. J. P. H. van Santen. Segmental duration and speech timing. In Computing Prosody: Approaches to a Computational Analysis of the Prosody of Spontaneous Speech. New York: Springer- Verlag, 1997. This volume.

    Google Scholar 

  36. M. Wang and J. Hirschberg. Automatic classification of international phrase boundaries. Computer Speech and Language 6:175–196, 1992.

    Article  Google Scholar 

  37. C. W. Wightman and M. Ostendorf. Automatic labelling of prosodie patterns. IEEE Trans, on Speech and Audio Processing, 2:469–481, 1994.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Ostendorf, M., Ross, K. (1997). A Multi-level Model for Recognition of Intonation Labels. In: Sagisaka, Y., Campbell, N., Higuchi, N. (eds) Computing Prosody. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2258-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2258-3_19

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7476-6

  • Online ISBN: 978-1-4612-2258-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics