Skip to main content

Life and Death: What Is the Major Mystery?

  • Chapter
Developmental Biology
  • 572 Accesses

Abstract

Fundamental concepts linking programmed death to the evolution of multicellularity were advanced as early as 1881 by August Weismann, a zoologist and pioneer of genetic theories designed to explain development and cell differentiation. Weismann proposed that aging and decay are not inherent to life itself but are events that became integral to development only in the course of evolution of multicellular organisms. Only the multicellular organism inevitably would be doomed, through senescence—the process of aging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Blackburn, E. (1991): Structure and function of telomeres. Nature 350:569–573.

    Article  PubMed  CAS  Google Scholar 

  • Harley, C.B., et al. (1992): The telomere hypothesis of cellular aging. Exp. Gerontol. 27:375–382.

    Article  PubMed  CAS  Google Scholar 

  • Hayflick, L. (1980): The cell biology of human aging. Sci. Am. 242(1): 58–65.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, E, and Bottjer, S.W. (1994): Afferent influences on cell death and birth during development of a cortical nucleus necessary for learned vocal behavior in zebra finches. Development 120:13–24.

    PubMed  CAS  Google Scholar 

  • Oppenheim, R.W., Prevette, D., Tytell, M., and Homma, S. (1990): Naturally occurring and induced neuronal cell death in the chick embryo in vivo requires protein and RNA synthesis: Evidence for the role of cell death genes. Dev. Biol. 138:104–113.

    Article  PubMed  CAS  Google Scholar 

  • Raff, M.C., et al. (1993): Programmed cell death and the control of cell survival: Lessons from the nervous system: Science 262: 695–700.

    Article  PubMed  CAS  Google Scholar 

  • Svendsen, C.N., and Rosser, A.E. (1995): Neurones from stem cells? Trends Neurosci. 18:465–467.

    Article  PubMed  CAS  Google Scholar 

  • Wallace, D.C. (1992): Mitochondrial genetics: A paradigm for aging and degenerative diseases. Science 256:628–632.

    Article  PubMed  CAS  Google Scholar 

  • Wickelgren, I. (1996): Is hippocampal cell death a myth? Science 271: 1229–1230.

    Article  PubMed  CAS  Google Scholar 

  • Williams, G.T., and Smith, C.A. (1993): Molecular regulation of apoptosis. Genetic controls on cell death. Cell 74:777–780.

    Article  PubMed  CAS  Google Scholar 

  • Zakian, V.A., et al. (1990): How does the end begin. Trends Genet. 6: 12–16.

    Article  PubMed  CAS  Google Scholar 

  • Zwilling, R., and Balduini, C. (1992): Biology of Aging. Springer-Verlag, Heidelberg.

    Google Scholar 

Box 1. History of the Developmental Biology

  • Aristotle. De Anima. In Hicks, R.D. (1965) Aristotle’s De Anima, Adolf M. Hakkert Publ., Amsterdam.

    Google Scholar 

  • Aristotle. Historia Animalium. In Smith, J.A., and Ross, W.D. (eds.) (1949): The works of Aristotle translated into English, Vol. IV, Historia animalium, translated by Thomson, D.W.; at the Clarendon Press, Oxford.

    Google Scholar 

  • Bonner, J.T (1962): Ideas in Biology. Harper & Row, New York.

    Google Scholar 

  • Boveri, T. (1904): Ergebnisse über die Konstitution der chromatischen Substanz. Gustav Fischer, Jena, Germany.

    Google Scholar 

  • Boveri, T. (1910): Die Potenzen der Ascaris-Blastomeren bei abgeänderter Furchung. Festschrift für Richard Hertwig, vol3. Gustav Fischer, Jena, Germany.

    Google Scholar 

  • Dampier, W.C. (1948): A History of Science and Its Relations with Philosophy and Religion. 4th ed., The Claredon Press, Cambridge.

    Google Scholar 

  • Driesch, H. (1892): The potency of the first two cleavage cells in echinoderm development. Experimental production of partial and double formations. In Willer, B.H., and Oppenheimer, J.M. (eds.) Foundations of Experimental Embryology, pp. 38–50. Hafner, New York.

    Google Scholar 

  • Driesch, H. (1908): The Science and Philosophy of the Organism. I. Gilford Lectures 1907; II. Gilford Lectures 1908. A & C. Black, London.

    Google Scholar 

  • Gardner, E.J. (1965): History of Biology. Burgess, Minneapolis.

    Google Scholar 

  • Gould, S.J. (1977): Ontogeny and Phylogeny. Belkamp, Harvard Univ. Press, Cambridge, MA.

    Google Scholar 

  • Haeckel, E. (1892): The history of creation. Translation of Natürliche Schöpfungsgeschichte. Kegan Paul, Trench, Trubner; London.

    Google Scholar 

  • Hamburger, V. (1988): The Heritage of Experimental Embryology: Hans Spemann and the Organizer. Oxford Univ. Press, New York.

    Google Scholar 

  • Harvey, W. (1651): De generatione animalium. English translation by R. Willis. Encyclopedia Brittanica, Inc., Great Books of the Western World, Chicago; reprinted 1952.

    Google Scholar 

  • Müller, W.A. (1996): From the Aristotelian soul to genetic and epigenetic information. Int. J. Dev. Biol. 40:21–26.

    PubMed  Google Scholar 

  • Sander, K. (1991a): Landmarks in developmental biology: Wilhelm Roux and his programme for developmental biology. Roux’s Arch. Dev. Biol. 200: 1–3.

    Article  Google Scholar 

  • Sander, K. (1991b): Wilhelm Roux’s treatise on “qualitative” mitoses—a “classic” by either definition. Roux’s Arch. Dev. Biol. 200:61–63.

    Article  Google Scholar 

  • Sander, K. (1991c): Wilhelm Roux on embryonic axes, sperm entry and the grey crescent. Roux’s Arch. Dev. Biol. 200:117–119.

    Article  Google Scholar 

  • Sander, K. (1991d): When seeing is believing: Wilhelm Roux’s misconceived fate map. Roux’s Arch. Dev. Biol. 200:177–179.

    Article  Google Scholar 

  • Sander, K. (1991e): “Mosaic work” and “assimilating effects” in embryo-genesis: Wilhelm Roux’s conclusions after disabling frog blastomeres. Roux’s Arch. Dev. Biol. 200:237–239.

    Article  Google Scholar 

  • Sander, K. (1991f): Wilhelm Roux and the rest: Developmental theories 1885–1895. Roux’s Arch. Dev. Biol. 200:331–333.

    Google Scholar 

  • Sander, K. (1992a): Shaking a concept: Hans Driesch and the varied fates of sea urchin blastomeres. Roux’s Arch. Dev. Biol. 201:265–267.

    Article  Google Scholar 

  • Sander, K. (1992b): Hans Driesch’s “philosophy really ab ovo” or why to be a vitalist. Roux’s Arch. Dev. Biol. 202:1–3.

    Article  Google Scholar 

  • Sander, K. (1993): Entelechy and the ontogenetic machine-work and views of Hans Driesch from 1895 to 1910. Roux’s Arch. Dev. Biol. 202:70–76.

    Article  Google Scholar 

  • Spemann, H. (1938): Embryonic Development and Induction. Yale Univ. Press, New Haven, CT. (Reprinted by Hafner, New York, 1962).

    Google Scholar 

  • von Baer, K.E. (1828): Über Entwicklungsgeschichte der Thiere. Königsberg, Germany.

    Google Scholar 

Box 2. Experiments with Eggs and Early Embryos, Cloning, Chimeras, and Transgenic Animals

  • Briggs, R., and King, T.J. (1952): Transplantation of living nuclei from blastula cells into enucleated frog eggs. Proc. Natl. Acad. Sci. USA 38:455–463.

    Article  PubMed  CAS  Google Scholar 

  • Brun, R.B. (1978): Developmental capacities of Xenopus eggs, provided with erythrocyte or erythroblast nuclei from adults. Dev. Biol. 65:271–284.

    Article  PubMed  CAS  Google Scholar 

  • Campbell, K.H.S., McWhir, J., Ritchie, W.A., and Wilmut, I. (1996): Sheep cloned by nuclear transfer from a cultured cell line. Nature 380:64–66.

    Article  PubMed  CAS  Google Scholar 

  • Cappecchi, M.R. (1980): High efficiency transformation by direct microinjection of DNA into cultured mammalian cells. Cell 22:479–488.

    Article  Google Scholar 

  • DiBernadino, M.A. (1988): Genomic multipotentiality of differentiated somatic cells. In G. Eguchi, et al. (eds.) Regulatory Mechanisms in Developmental Processes, pp. 129–136. Elsevier, Amsterdam, New York.

    Google Scholar 

  • First, N.L., and Prather, R.S. (1991): Genomic potentials in mammals. Differentiation 48:1–8.

    Article  PubMed  CAS  Google Scholar 

  • Gordon, J.W. (1988): Transgenic mice. In Malacinsky G.M. (ed.) Developmental Genetics of Higher Organisms: A Primer in Developmental Biology, pp. 477–498. Macmillan, New York.

    Google Scholar 

  • Gossler, A., et al. (1986): Transgenesis by means of blastocyst-derived stem cell lines. Proc. Natl. Acad. Sci. USA 83:9065–9069.

    Article  PubMed  CAS  Google Scholar 

  • Gurdon, J.B. (1962): The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J. Embryol. Exp. Morphol. 10: 622–640.

    PubMed  CAS  Google Scholar 

  • Gurdon, J.B. (1968): Transplanted nuclei and cell differentiation. Sci. Am. 219(6):24–35.

    Article  PubMed  CAS  Google Scholar 

  • Hanahan, D. (1989): Transgenic mice as probes into complex systems. Science 245:1265–1274.

    Article  Google Scholar 

  • McGrath, J., and Solter, D. (1984): Inability of mouse blastomere nuclei transferred to enucleated zygotes to support development in vitro. Science 226:1317–1319.

    Article  PubMed  CAS  Google Scholar 

  • Mintz, B. (1957): Does embryological development of primordial germ cells affect its development? Symp. Br. Soc. Dev. Biol. 7:225–221.

    Google Scholar 

  • Solter, D. (1996): Lambing by nuclear transfer. Nature 380:24–25.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, S., et al. (1989): Germ line transmission and expression of a corrected HPRT gene produced by gene targeting in embryonic stem cells. Cell 56:313–321.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, E.E (1990): Mouse genetics meet molecular biology at Cold Spring Harbor. New Biologist 2:1971–1074.

    Google Scholar 

  • Wagner, E.F., and Keller, G. (1992): The introduction of genes into mouse embryos and stem cells. In Russo, V.E.A., et al. (eds.) Development: The Molecular Genetic Approach, pp. 440–458. Springer-Verlag, Heidelberg.

    Google Scholar 

  • Wakimoto, T., and Karpen, G.H. (1988): Transposable elements and germ-line transformation in Drosophila. In Malacinsky, G.M. (ed.) Developmental Genetics of Higher Organisms: A Primer in Developmental Biology, pp. 275–303. Macmillan, New York.

    Google Scholar 

Box 3. The PI Signal Transduction System

  • Ciapa, B., et al. (1992): Phosphoinositide metabolism during the fertilization wave in sea urchin eggs. Development 115:187–195.

    PubMed  CAS  Google Scholar 

  • Gallicano, G.I., et al. (1993): Protein kinase C, a pivotal regulator of hamster egg activation, functions after elevation of intracellular free calcium. Dev. Biol. 156:94–106.

    Article  PubMed  CAS  Google Scholar 

  • Larabell, C., and Nuccitelli, R. (1992): Inositol lipid hydrolysis contributes to the Ca2+ wave in the activating egg of Xenopus laevis. Dev. Biol. 153: 347–355.

    Article  PubMed  CAS  Google Scholar 

  • Otte, A.P., et al. (1988): Protein kinase C mediates neural induction in Xenopus laevis. Nature 334:618–620.

    Article  PubMed  CAS  Google Scholar 

  • Whitaker, M., and Swann, K. (1993): Lighting the fuse at fertilization. Development 117:1–12.

    CAS  Google Scholar 

Box 4. Models of Biological Pattern Formation

  • Edelstein-Keshet, L., and Ermentrout, B.G. (1990): Contact response of cells can mediate morphogenetic pattern formation. Differentiation 45:147–159.

    Article  PubMed  CAS  Google Scholar 

  • Haken, H. (1978): Synergetics. Springer-Verlag, Heidelberg.

    Google Scholar 

  • Meinhardt, H. (1982): Models of Biological Pattern Formation. Academic Press, New York.

    Google Scholar 

  • Meinhardt, H. (1995): The Algorithmic Beauty of Seashells. Springer-Verlag, Heidelberg.

    Google Scholar 

  • Murray, J.D. (1989): Mathematical Biology. Springer-Verlag, Heidelberg.

    Google Scholar 

  • Prigogine, I., and Nicolis, G. (1967): On symmetry-breaking instabilities in dissipative systems. J. Chem. Phys. 46:3542–3550.

    Article  CAS  Google Scholar 

  • Turing, A.M. (1952): The chemical basis of morphogenesis. Philos. Trans. Roy. Soc. London B 237:37–72.

    Article  Google Scholar 

  • Steinberg, M.S., and Takeichi, M. (1994): Experimental specification of cell sorting, tissue spreading, and specific spatial patterning by quantitative differences in cadherin expression. Proc. Natl. Acad. Sci. USA 91:206–209.

    Article  PubMed  CAS  Google Scholar 

  • Wolpert, L. (1969): Positional information and the spatial pattern of cellular formation. J. Theor. Biol. 25:1–47.

    Article  PubMed  CAS  Google Scholar 

  • Wolpert, L. (1978): Pattern formation in biological development. Sci. Am. 239(4):154–164.

    Article  PubMed  CAS  Google Scholar 

  • Wolpert, L. (1989): Positional information revisited. Development 1989 (Suppl.):3–12.

    Google Scholar 

Box 5: Signal Molecules Acting through Nuclear Receptors (See also Chapter 17)

  • Beato, M., Herrlich, P., and Schütz, G. (1995): Steroid hormone receptors: Many actors in search of a plot. Cell 83:851–857.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y.P., Huang, L., and Solursh, M. (1994): A concentration gradient of retinoids in the early Xenopus embryo. Dev. Biol. 161:70–76.

    Article  PubMed  Google Scholar 

  • Conlon, R.A. (1995): Retinoic acid and pattern formation in vertebrates. Trends Genet. 11(8):314–319.

    Article  PubMed  CAS  Google Scholar 

  • Eichele, G. (1989): Retinoic acid induces a pattern of digits in anterior half wing buds that lack the zone of polarizing activity. Development 107:863–867.

    PubMed  CAS  Google Scholar 

  • Kastner, P., Mark., M., and Chambon, P. (1995): Nonsteroid nuclear receptors: What are genetic studies telling us about their role in real life? Cell 83:859–869.

    Article  PubMed  CAS  Google Scholar 

  • Maden, M., et al. (1989): Cellular retinoic acid-binding protein and the role of retinoic acid in the development of the chick embryo. Dev. Biol. 135: 124–132.

    Article  PubMed  CAS  Google Scholar 

  • Mangelsdorf, D.J., et al. (1995): The nuclear receptor superfamily: The second decade. Cell 83:835–839.

    Article  PubMed  CAS  Google Scholar 

  • Mangelsdorf, D.J., and Evans, R.M. (1995): The RXR heterodimers and orphan receptors. Cell 83:841–850.

    Article  PubMed  CAS  Google Scholar 

  • Umesono, K., and Evans, R.M. (1989): Determinants of target gene specificity for steroid/thyroid hormone receptors. Cell 57:1139–1146.

    Article  PubMed  CAS  Google Scholar 

Box 7. Some Cellular and Molecular Methods of Recent Developmental Biology (See also Bibliography for Box 2)

  • Barinaga, M. (1994): Knockout mice: round two. Science 265:26–28.

    Article  PubMed  CAS  Google Scholar 

  • Chisaka, O., and Capecchi, M.R. (1991): Regionally restricted developmental defects resulting from targeted disruption of the mouse homeobox gene Hox-1.5. Nature 350:473–479.

    Article  PubMed  CAS  Google Scholar 

  • Cubitt, A.B., et al. (1995): Understanding, improving and using green fluorescent protein. Trends Biochem. Sci. 20:448–455.

    Article  PubMed  CAS  Google Scholar 

  • Friedrich, G., and Soriano, P. (1991): Promoter traps in amphibian stem cells: A genetic screen to identify and mutate developmental genes in mice. Genes Dev. 5:1513–1523.

    Article  PubMed  CAS  Google Scholar 

  • Gossen, M., Bonin, A.L., and Bujard, H. (1993): Control of gene activity in higher eukaryotic cells by prokaryotic regulatory elements. Trends Biochem. Sci. 18:471–475.

    Article  PubMed  CAS  Google Scholar 

  • Prasher, D.C. (1995): Using GFP to see the light. Trends Genet. 11: 320–323.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, E.F. (1990): Mouse genetics meet molecular biology at Cold Spring Harbor. New Biologist 2:1971–1074.

    Google Scholar 

  • Wakimoto, T., and Karpen, G.H. (1988): Transposable elements and germ-line transformation in Drosophila. In Malacinsky, G.M. (ed.) Developmental Genetics of Higher Organisms: A Primer in Developmental Biology, pp. 275–303. Macmillan, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Müller, W.A. (1997). Life and Death: What Is the Major Mystery?. In: Developmental Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2248-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2248-4_22

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7472-8

  • Online ISBN: 978-1-4612-2248-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics