Skip to main content

Phenomenological Models of the Primary Productivity of Zonal Arctic Ecosystems

  • Chapter

Part of the book series: Ecological Studies ((ECOLSTUD,volume 124))

Abstract

The primary productivity of an ecosystem, as measured by either the rate of gross photosynthesis of the photoautotrophs (called Gross Primary Productivity, GPP) or the rate of net photosynthesis of the autotrophs (as equal to the gross photosynthesis minus respiration, called Net Primary Productivity, NPP), belongs to the prime components of the gas exchange between the ecosystem and the atmosphere. For most terrestrial ecosystems, reliable empirical data and adequate mathematical models of production process are presently available; however, for arctic and alpine ecosystems the number and quality of related data remain very limited. The available publications and reviews are usually limited to pairwise linear correlative relationships (Bazilevich, 1992, 1994; Bazilevich et al., 1986; French, 1981; Wielgolaski et al., 1981), though the need for multivariate nonlinear analysis is generally acknowledged.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aleksandrova, V.D. 1958. An attempt to measure the areal and underground mass of plants in the arctic tundra. Botanicheskii Zhurnal(Leningrad) 43: 1748 – 1762.

    Google Scholar 

  • Aleksandrova, V.D. 1971. On the principles of the zonal division of the vegetation of the Arctic. Botanicheskii Zhurnal(Leningrad) 56: 1 – 21.

    Google Scholar 

  • Andreev, V.N., and Galaktionova, T.F. 1978. Formation of the reserves of aboveground phytomass in communities of subarctic tundra. In: Sezonnaya i Pogodovaya Dinamika Fitomassy v Subarkticheskoy Tundre [Seasonal and Year- to-year Dynamics of Phytomass in Subarctic Tundra](pp. 164 – 177 ). Novosibirsk: Nauka.

    Google Scholar 

  • Andreyashkina, N.I., and Gorchakovsky, P.L. 1972. Productivity of the shrub, dwarf shrub and herbaceous communities and a method of its investigation. Ekologiya(Sverdlovsk) 3: 5 – 12.

    Google Scholar 

  • Barney, R.J., and Van Cleve, K. 1973. Black spruce fuel weights and biomass in two interior Alaska stands. Can. J. Forest Res.3: 304 – 311.

    Article  Google Scholar 

  • Baule, B. 1918. Zu Mitscherlichs Gesetz der physiologischen Beziechungen. Landw. Jahrb.51.

    Google Scholar 

  • Bazilevich, N.I. 1992. Computer Data Bases on Biological Productivity of the Ecosystems of the World. Moscow: Scientific Technical Center “Ekologia,” Russian Academy of Sciences.

    Google Scholar 

  • Bazilevich, N.I. 1994. Primary Productivity of the Natural Ecosystems of the North- East Eurasia. Moscow: Nauka.

    Google Scholar 

  • Bazilevich, N.I., Grenenshchikov, O.S., and Tishkov, A.A. 1986. Geograficheskie Zakonomernosti Struktury I Funkcionirovaniya Ekosystem [Geographical Regularities of Structure and Functioning of Ecosystems]. Moscow: Nauka.

    Google Scholar 

  • Bliss, L.C. 1975. Devon Island, Canada. In: Rosswall, T., and Heal, O.W. (eds.), Structure and Function of Tundra Ecosystems(pp. 17 – 60 ). Stockholm: Swedish Natural Sciences Research Council.

    Google Scholar 

  • Bliss, L.C., and Kerik, J. 1973. Primary production of plant communities of the Truelove Lowland, Devon Island, Canada—rock outcrops. In: Bliss, L.C., and Wielgolaski, F.E. (eds.), Primary Production and Production Processes, Tundra Biome(pp. 27 – 36 ). Edmonton: IBP Tundra Biome Steering Committee.

    Google Scholar 

  • Bliss, L.C., and Matveyeva, N.V. 1992. Circumpolar Arctic vegetation. In: Chapin, F.S. III etal. (eds.), Arctic Ecosystems in a Changing Climate(pp. 59 – 89 ). San Diego: Academic Press.

    Google Scholar 

  • Bliss, L.C., and Svoboda, J. 1980. Plant communities and plant production on Banks and Victoria islands. Manuscript, cit. by: Wielgolaski etal., 1981.

    Google Scholar 

  • Bliss, L.C., Svoboda, J., and Bliss, D.I. 1984. Polar deserts, their plant cover and plant production in the Canadian high arctic. Holarctic Ecol. 7: 304 – 324.

    Google Scholar 

  • Bogatyrev, L.G. 1973. Biological cycling of ash elements in a shrub-sedge-moss tundra. In: Pochvy i Rastitel’nost Merzlotnykh Rayonov SSSR [Soils and Vegetation of the Permafrost Regions of the USSR]. Magadan.

    Google Scholar 

  • Bogatyrev, L.G. 1975. Transfer of plant litter in the tundra biogeocoenoses. Vestnik Moskovskogo Universiteta, Ser. 6. Biologiya, Pochvovedenie (Proceedings of the Moscow University, Ser. 6. Biology and Soil Science ), N. 2.

    Google Scholar 

  • Bogdanov, E.I., Ignatenko, I.V., and Pugachev, A.A. 1979. Soils, phytomass reserves and productivity of the tall shrub tundras of the south-eastern Chukotka. In: Biologicheskaya Produktivnost’ Pochv i Eye Uvelichenie v Interesakh Narodnogo Khozyaistva [Biological Productivity of Soils And its Increase for the People’s Economy Purposes](pp. 26 - 27 ). Moscow: Moscow University Publishing House.

    Google Scholar 

  • Bowman, W.D., Theodose, T.A., Schardt, J.C., and Conant, T. 1993. Constraints of nutrient availability on primary production in two alpine tundra communities. Ecology74: 2085 - 2097.

    Article  Google Scholar 

  • Budyko, M.I. 1974. Climate and Life. New York: Academic Press.

    Google Scholar 

  • Bunnell, F.L. and Scoullar, K.A. 1975. ABISKO-II. A computer simulation model of carbon flux in tundra ecosystems. In: Rosswall, T., and Heal, O.W. (eds.), Structure and Function of Tundra Ecosystems(pp. 425 - 448 ). Stockholm: Swedish Natural Science Research Council.

    Google Scholar 

  • Chertovskoy, V.G., Elizarov, F.P., Cemenov, B.A., and Kornyak, V.S. 1978. Forest growth conditions and productivity of near tundra forests. In: Chertovskoy, V.G. (ed.), Ekologia Taezhnykh Lesov [Ecology of Taiga Forests](pp. 32–42). Archangelsk: Archangelsk Institute of Forest and Chemistry.

    Google Scholar 

  • Chugunova, M.V. 1979. Some chemical properties of the soils of Mys Chelyuskin. In: Aleksandrova, V.D., and Matveyeva, N.V. (eds.), Arctic Tundra and Polar Deserts of Taimyr(pp. 74 - 77 ). Leningrad: Nauka.

    Google Scholar 

  • Collier, B.D., Stenseth, N., Osborn, R., and Barkley, S. 1975. A simulation model of energy acquisition and utilization by the brown lemming (Lemmus trimucronatus) at Barrow, Alaska. Oikos26: 276 - 295.

    Article  Google Scholar 

  • Collins, N.J., Baker, J.H., and Tilbrook, P.J. 1975. Signy Island, maritime Antarctic. In: Rosswall, T., and Heal, O.W. (eds.), Structure and Function of Tundra Ecosystems(pp. 345 - 374 ). Stockholm: Swedish Natural Science Research Council.

    Google Scholar 

  • Draper, N.R., and Smith, H. 1981. Applied Regression Analysis, 2nd ed. New York: Wiley.

    Google Scholar 

  • Dyakonov, K.N., and Retium, A.Y. 1971. Data on productivity of tundra and forest- tundra in the region of the lower Ob’ River. In: Biological Productivity and Mineral Cycling in the Terrestrial Plant Communities(pp. 43 - 46 ). Leningrad: Nauka.

    Google Scholar 

  • Elkington, J.J., and Jones, B.M.G. 1974. Biomass and primary productivity of birch (Betula pubescences. lat.) in south-west Greenland. J. Ecol.62: 821 - 830.

    Article  Google Scholar 

  • Esser, G. 1986. The carbon budget of the biosphere—structure and preliminary results of the Osnabruck Biosphere Model. Veroff Naturf Ges. zu Emden von 18147: 160.

    Google Scholar 

  • Esser, G. 1987. Sensitivity of global carbon pools and fluxes to human and potential climate impacts. Tellus39B: 245 - 260.

    Article  CAS  Google Scholar 

  • Esser, G. 1991. Osnabruck biosphere model: structure construction, results. In: Esser, G., and Overdieck, D. (eds.), Modern Ecology: Basic and Applied Aspects(pp. 679 - 709 ). Amsterdam: Elsevier.

    Google Scholar 

  • Esser, G., Aselmann, I., and Lieth, H. 1982. Modelling the carbon reservoir in the system compartment “litter”. In: Mitteillungen aus dem Geologisch- Palaentologischen Institut der Universität Hamburg52:39–-58. Hamburg: University of Hamburg Press.

    Google Scholar 

  • Forrester, J.W. 1961. Industrial Dynamics. Cambridge: MIT Press.

    Google Scholar 

  • French, D.D. 1974. Classification of IBP Tundra Biome sites based on climate and soil properties. In: Holding, A.J., Heal, O.W., MacLean, S.F., and Flanagan, P.W. (eds.), Soil Organisms and Decomposition in Tundra: Proceedings of the Microbiology, Decomposition and Invertebrate Working Groups Meeting, Fairbanks, Alaska, August, 1973(pp. 3 – 25 ). Stockholm: Tundra Biome Steering Committee.

    Google Scholar 

  • French, D.D. 1981. Multivariate comparisons of IBP Tundra Biome site characteristics. In: Bliss, L.C., Heal, O.W., and Moore, J.J. (eds.), Tundra Ecosystems: A Comparative Analysis(pp. 47 – 51 ). Cambridge: Cambridge University Press.

    Google Scholar 

  • Gasheva, A.F. 1974. Phytomass reserves in some communities of the “Kharp” field station. In: Gorchakovski, P.L., and Smirnov, V.S. (eds.), Biomassa i Dinamika Rastitel’nogo Pokrova i Zhivotnogo Naseleniya v Lesotundre. Trudy Instituta Ekologii Rastenii i Zhivotnykh UNC AN SSSR, vyp. 88. [Biomass and the Dynamics of Plant Cover and Animal Population in Forest Tundra. Proc. Institute of Ecology of Plants and Animals of the Urals Scientific Center, Acad. Sci. USSR, Issue 88](pp. 106 – 107 ). Sverdlovsk: UNC AN SSSR.

    Google Scholar 

  • Gersper, P.L., Alexander, V., Barkley, S.A., Barsdate, R.J., and Flint, P.S. 1980. The soils and their nutrients. In: Brown, J., Miller, P.C., Tieszen, L.L., and Bunnell, F.L. (eds.), An Arctic Ecosystem: The Coastal Tundra at Barrow, Alaska(pp. 219 – 254 ). Stroudsburg, PA: Dowden, Hutchinson, and Ross.

    Google Scholar 

  • Gilmanov, T.G. 1993. Empirical and theoretical foundations for modelling the response of ecosystems to climatic change (with emphasis to boreal and arctic/ alpine areas). In: Holten, J.I., Poulsen, G., and Oechel, W.C. (eds.), Impact of Climatic Change on Natural Ecosystems(pp. 43 – 74 ). Trondheim, Norway: Norwegian Institute for Nature research and Directorate for Nature Management.

    Google Scholar 

  • Gorchakovsky, P.L., and Andreyaskina, N.I. 1972. Productivity of some shrub, dwarf shrub and herbaceous communities of forest-tundra. In: Wielgolaski, F.E., and Rosswall, T. (eds.), Proceedings IVth International Meeting on the Biological Productivity of Tundra(pp. 113 – 116 ). Stockholm: Tundra Biome Steering Committee.

    Google Scholar 

  • Grigoryev, A.A., and Budyko, M.I. 1956. On the periodic law of geographical zonality. Doklady Akademii Nauk SSSR110: 129 – 132.

    Google Scholar 

  • Haag, R.W. 1974. Nutrient limitations to plant production in two tundra communities. Can. J. Bot.52: 103 – 116.

    Article  CAS  Google Scholar 

  • Haag, R.W., and Bliss, L.C. 1974. Energy budget changes following surface disturbance to upland tundra. J. App. Ecol.11: 355 – 374.

    Article  Google Scholar 

  • Himmelblau, D.M. 1970. Process Analysis by Statistical Methods. New York: Wiley.

    Google Scholar 

  • Ignatenko, I.V. 1979. Pochvy Vostochnoevropeyskoy Tundry i Lesotundry [Soils of the East-European Tundra and Forest Tundra]. Moscow: Nauka.

    Google Scholar 

  • Ignatenko, I.V., and Khakimzyanova, F.I. 1971. Soils and total phytomass reserves in dwarf birch—white dryas and willow tundras of the East European Northlands, Ekologia (Sverdlovsk)4: 17 – 24.

    Google Scholar 

  • Ignatenko, I.V., Norin, B.N., and Rakhmanina, A.T. 1973. Cycling of mineral elements and nitrogen in some biogeocoenoses of the East-European forest tundra. In: Pochvy i RastiteVnosf Merzlotnykh Rayonov SSSR [Soils and Vegetation of the Permafrost Regions of the USSR](pp. 335 – 350 ). Magadan: Institute of Biological Problems of the North.

    Google Scholar 

  • Ignatenko, I.V., Knorre, I.V., Lovelius, A.V., and Norin, N.V. 1972. Standing crop in plant communities at the station Ary-Mas. In: Wielgolaski, F.E., and Rosswall, T. (eds.), Proceedings IVth International Meeting on the Biological Productivity of Tundra(pp. 140 – 149 ). Stockholm: Tundra Biome Steering Committee.

    Google Scholar 

  • Jenny, H. 1941. Factors of Soil Formation. A System of Quantitative Pedology. New York: McGraw-Hill.

    Google Scholar 

  • Jenny, H. 1980. The Soil Resource: Origin and Behavior. New York: Springer- Verlag.

    Google Scholar 

  • Johnson, I.R., and Thornley, J.H.M. 1984. A model of instantaneous and daily canopy photosynthesis. J. Theor. Biol.107: 531 – 545.

    Article  Google Scholar 

  • Khantimer, I.S. 1970. Increment of the aboveground phytomass in the virgin and managed tundra. In: Produktivnost’ Biogeotsenozov Subarktiki [Productivity of the Biogeocoenoses of Subarctics](pp. 84 – 86 ). Sverdlovsk: Ural Branch of the Academy of Sciences of the USSR.

    Google Scholar 

  • Khantimer, I.S. 1974. Agricultural Management of Tundra. Leningrad: Nauka.

    Google Scholar 

  • Khodachek, E. A. 1969. Phytomass of the tundra phytocoenoses on the west Taimyr. Bot. Zhurn. (Leningrad)54: 1059 – 1075.

    Google Scholar 

  • Lewis Smith, R.I., and Walton, D.W.H. (1975). South Georgia, subantarctic. In: Rosswall, T., and Heal, O.W. (eds.), Structure and Function of Tundra Ecosystems. Ecol. Bull. (Stockholm)(pp. 399 – 423 ). Stockholm: Swedish Natural Science Research Council.

    Google Scholar 

  • von Liebig, J.F. 1840. Die Organische Chemie in Ihrer Anwendung auf Agricultur und Physiologie. Braunschweig: Verlag von Friedrich Vieweg und Sohn.

    Google Scholar 

  • Lieth, H. 1972. Über die Primarproduktion der Pflanzendecke der Erde. Z. Angewand. Botan.46: 1 – 37.

    Google Scholar 

  • Lieth, H. 1975a. Modeling the primary productivity of the world. In: Lieth, H., and Whittaker, R.H. (eds.), Primary Productivity of the Biosphere(pp. 237 – 263 ). New York: Springer-Verlag.

    Google Scholar 

  • Lieth, H. 1975b. Primary productivity of the major vegetation units of the world. In: Lieth, H., and Whittaker, R.H. (eds.), Primary Productivity of the Biosphere(pp. 203 – 215 ). New York: Springer-Verlag.

    Google Scholar 

  • Lieth, H. 1976. Biophysikalische Fragestellungen in der Okologie und Umweltfor- schung. Teil 2: Extremalprinzipien in Okosystemen. Radiat. Environ. Biophys13: 337 – 351.

    Article  PubMed  CAS  Google Scholar 

  • Lieth, H., and Box, E.O. 1977. The gross primary productivity pattern of the land vegetation: A first attempt. Tropical Ecol. 18: 109 – 115.

    Google Scholar 

  • Manakov, K.N. 1970. Elementy Biologicheskogo Krugovorota na Polyarnov Severe [Elements of the Biological Cycling at the Polar North]. Leningrad: Nauka.

    Google Scholar 

  • Manakov, K.N. 1972. Productivity and Biological Turn-over in the Tundra Biogeocoenoses of the Kola Peninsula. Leningrad: Nauka.

    Google Scholar 

  • Manakov, K.N. 1974. Mineral cycling in the birch woodlands of the forest tundra of Kola Peninsula. In: Biologicheskie Processy i Mineral’nyi Obmen v Pochvakh Kol’skogo Poluostrova [Biological Processes and Mineral Cycling in Soils of the Kola Peninsula](pp. 110 – 137 ). Apatity: Kola branch, USSR Academy of Sciences.

    Google Scholar 

  • Matveyeva, N.V. 1979. The structure of the plant cover in the polar deserts of the Taimyr Peninsula (Mys Chelyuskin) (In Russian). In: Aleksandrova, V.D., and Matveyeva, N.V. (eds.), The arctic tundras and polar deserts of Taimyr(pp. 5 – 27 ). Leningrad: Nauka.

    Google Scholar 

  • Melillo, J.M., McGuire, A.D., D.W., K., Moore, III, B., Vorosmarty, C.J., and Schloss, A.L. 1993. Global climate change and terrestrial net primary production. Nature, 363: 234 – 240.

    CAS  Google Scholar 

  • Miller, P.C., Kendall, R., and Oechel, W.C. 1983. Simulating carbon accumulation in northern ecosystems. Simulation40: 119 – 131.

    Article  CAS  Google Scholar 

  • Miller, P.C., Oechel, W.C., Stoner, W.A., and Sveinbjornsson, B. 1978. Simulation of CO2 uptake and water relations of four arctic bryophytes at Point Barrow, Alaska. Photosynthetica12: 7 – 20.

    CAS  Google Scholar 

  • Miller, P.C., Miller, P.M., Blake-Jacobson, M., Chapin, F.S., Everett, K.R., Hilbert, D.W., Kummerow, J., Linkins, A.E., Marion, G.M., Oechel, W.C., Roberts, S.W., and Stuart, L. 1984. Plant-soil processes in Eriophorum vaginatum tussock tundra in Alaska: Systems modeling approach. Ecol. Monogr.54: 361 – 405.

    Article  CAS  Google Scholar 

  • Mitscherlich, L.A. 1909. Das Gesetz des Minimums und das gesetz des abnehmenden Bodenertrages. Landw. Jahrb.38: 537 – 552.

    CAS  Google Scholar 

  • Novak, J.M. 1992. Nonlinear Fit program in the “Statistics” package provided by “Mathematica” software by Wolfram Research Institute.

    Google Scholar 

  • Parton, W.J., Schimel, D.S., Cole, C.V., and Ojima, D.S. 1987. Analysis of factors controlling soil organic matter levels in great plains grasslands. Soil Sci. Soc. Am. J.5: 1173 – 1179.

    Article  Google Scholar 

  • Parton, W.J., Scurlock, J.M., Ojima, D.S., Gilmanov, T.G., et al. 1993. Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochem. Cycles7: 785 – 809.

    Article  CAS  Google Scholar 

  • Pastor, J., and Post, W.M. 1986. Influence of climate, soil moisture, and succession on forest carbon and nitrogen cycles. Biogeochemistry2: 3 – 28.

    Article  Google Scholar 

  • Pavlova, E.B. 1969. On the plant mass of tundras of the western Taimyr. Vestnik Moskov. Univ. Ser. Biolog. [Bull. Moscow Univ., Biol. Ser.]5: 62 – 27.

    Google Scholar 

  • Poletaev, I.A. 1966. On mathematical models of biogeocoenoses (In Russian). Problemy kibernetiki16: 171 – 190.

    Google Scholar 

  • Poletaev, I.A. 1973. “Predator-prey” models by Volterra and some of their generalizations using the Liebig’s principle (In Russian). Zhurnal Obshchei Biologii 34:43–57.

    Google Scholar 

  • Pospelova, E.B. 1973. Seasonal dynamics of increment of some tundra shrubs Biologicheskie Nauki (Moscow)15: 66 – 70.

    Google Scholar 

  • Pospelova, E.B., and Orlov, M.V. 1984. Phytomass stock and structure of the spotty tundras of the eastern shore of Lake Taimyr [Russian SFSR, USSR]. Ekologia (Sverdlovsk)No. 1: 14 – 21.

    Google Scholar 

  • Pospelova, E.B., and Zharkova, Y.G. 1972. Plant cover and the phytomass of plant communities of the “Agapa” research station (In Russian). In: Pochvy i Produktivnost’ Rastitel’nykh Soobshchestv. Vyp.l [Soils and Productivity of Plant Communities. Issue l](pp. 55 – 78 ). Moscow: Moscow University Publishing House.

    Google Scholar 

  • Post, W.M., Emanuel, W.R., Zinke, P.J., and Stangenberger, A.G. 1982. Soil carbon pools and world life zones. Nature298: 156 – 159.

    Article  CAS  Google Scholar 

  • Prentice, C., Cramer, W., Harrison, S.P., et al. 1992. A global biome model based on plant physiology and dominance, soil properties and climate. J. Biogeogr.19: 117 – 134.

    Article  Google Scholar 

  • Rakhmanina, A.T. 1971. Aboveground and belowground phytomass of some communities of the Easteuropean forest tundra. In: Bazilevich, N.I., and Rodin, L.E. (eds.), Biological Productivity and mineral Cycling in Plant Communities(pp. 37– 42 ). Leningrad: Nauka.

    Google Scholar 

  • Reynolds, J.F., and Acock, B. 1985. Modeling approaches for evaluating vegetation responses to carbon dioxide concentration. In: Strain, B.R., and Cure, J.D. (eds.), Direct Effects of Increasing Carbon Dioxide on Vegetation(pp. 33 – 51 ). Washington DC: U.S. Department of Energy.

    Google Scholar 

  • Reynolds, J.F., and Leadley, P.W. 1992. Modeling the response of arctic plants to changing climate. In: Chapin, III, F.S. et al. (eds.), Arctic Ecosystems in a Changing Climate. An Ecophysiological Perspective(pp. 413 – 438 ). San Diego: Academic Press.

    Google Scholar 

  • Rosenzweig, M.L. 1968. Net primary productivity of terrestrial communities: Prediction from climatological data. Am. Natural.102: 57 – 74.

    Google Scholar 

  • Ryabchikov, A.M. 1968. Hydrothermal conditions and the productivity of plant mass in the principal landscape zones. Vestnik Moskov. Univ. Ser. Geogr. [Bull. Moscow Univ. Ser. Geogr.]No. 5: 41 – 48.

    Google Scholar 

  • Sandhaug, A., Kjelvik, S., and Wielgolaski, F.E. 1975. A mathematical simulation model for terrestrial tundra ecosystems. Ecol. Studies17: 251 – 266.

    Google Scholar 

  • SCOPEGRAM (SCOPE Grassland Modeling Group): Parton, W.J., Coughenour, M.B., Ojima, D., Scurlock, J., Hall, D., Gilmanov, T.G. etal. 1994. In press. Grassland ecosystem modeling—temperate and tropical; Modeling global grassland production in relation to climatic change. In: Melillo, J., and Hall, D. (eds.), Effects of Climate Change on Production and Decomposition in Coniferous Forests and Grasslands. SCOPE volume. New York: John Wiley.

    Google Scholar 

  • Shamurin, V.F. 1970. The main supply of phytomass in some tundra co-associations in the area of Vorkuta. In: Biological Foundations of Utilization of Nature of the Far North(pp. 25 – 29 ). Syktyvkar: Komi Publishing House.

    Google Scholar 

  • Shamurin, V.T., Polozova, T.G., and Khodachek, E.A. 1972. Plant biomass of main plant communities at the Tareya station (Taimyr). In: Tundra Biome (IBP). Proc. TV Intern. Meeting on Biol. Productivity of Tundra. Leningrad. Oct. 1971(pp. 163 – 181 ). Stockholm: Tundra Biome Steering Committee.

    Google Scholar 

  • Shaver, G.R., and Chapin, F.S. III. 1986. Effect of NPK fertilization on production and biomass of Alaskan tussock tundra. Arctic Alpine Res. 18: 261 – 268.

    Article  Google Scholar 

  • Shaver, G.R., and Chapin, F.S.III. 1991. Production: biomass relationships and element cycling in contrasting arctic vegetation types. Ecol. Monogr.61: 1 – 31.

    Article  Google Scholar 

  • Tikhomirov, B.A., Shamurin, V.F., and Aleksandrova, V.D. 1981. Phytomass and primary production of tundra communities, USSR. In: Bliss, L.C., Heal, O.W., and Moore, J.J. (eds.), Tundra Ecosystems: A Comparative Analysis(pp. 227– 237 ). Cambridge, New York: Cambridge University Press.

    Google Scholar 

  • Timin, M.E., Collier, B.D., Zich, J., and Walter, D. 1973. A Computer Simulation of the Arctic Tundra Ecosystem Near Barrow, Alaska. U.S. Tundra Biome Rep. No. 73–1. San Diego: San Diego State University.

    Google Scholar 

  • Tishkov, A. A. 1982. Phytomass of tundra plant communities on Spitzbergen. Manuscript.

    Google Scholar 

  • Trotsenko, G.V. 1974. On the reserves of phytomass in main plant communities of forest tundra of the Priobye North. In: Biologicheskie Problemy Severa. Vyp. 3. Botanika i Rastitel’nye Resursy [Biological Problems of the North. Issue 3. Botany and Plant Resources] (pp. 188–192).

    Google Scholar 

  • Van Cleve, K. 1981. Alaska data in woodland dataset. In: Reichle, D.E. (ed.), Dynamic Properties of Forest Ecosystems(pp. 648 – 650 ). Cambridge: Cambridge University Press.

    Google Scholar 

  • Vasilyevskaya, V.D., Ivanov, V.V., and Bogatyrev, L.G. 1986. Soils of the North of the West Siberia. Moscow: Moscow State University Publishing House.

    Google Scholar 

  • Vikhireva-Vasil–kova, V.V., Gavrilyuk, V.A., and Shamurin, V.F. 1964. Aboveground and belowground mass of some dwarf-shrub communities of Koryak Zemlya. In: Problemy Severa, Vypusk 8 (Problems of the North, Issue No. 8) (pp. 130–147).

    Google Scholar 

  • Vil’chek, G.E. 1984. Productivity of tundra phytocoenoses of the environs of Cape Kharasavey [Russian SFSR, USSR]. Biolog. Nauki (Moscow) No. 7: 67 – 71.

    Google Scholar 

  • Vil’chek, G.E. 1986. Productivity of some phytocoenoses in Vorkuta tundra [Russian SFSR, USSR]. Ekologiya (Sverdlovsk)No. 2: 8 – 13.

    Google Scholar 

  • Vil’chek, G.E. (1987). Productivity of typical tundras of Taimyr [Russian SFSR, USSR]. Ekologiya(Sverdlovsk) No. 5: 38 – 3.

    Google Scholar 

  • Volobuev, V.R. 1974. Introduction to the Energetics of Soil Formation. Moscow: Nauka.

    Google Scholar 

  • Waelbroeck, C. 1993. Climate-soil processes in the presence of permafrost: a systems modelling approach. Ecol. Model.69: 185 – 225.

    Article  Google Scholar 

  • Webber, P.J. 1974. Tundra primary productivity. In: Ives, J.D., and Barry, R.G. (eds.), Arctic and Alpine Environment(pp. 445 – 473 ). London: Methuen.

    Google Scholar 

  • Wielgolaski, F.E. 1972. Vegetation types and plant biomass in tundra. Arctic Alpine Res. 4: 291 – 305.

    Article  Google Scholar 

  • Wielgolaski, F.E. 1975. Productivity of tundra ecosystems. In: Productivity of World Ecosystems: Proceedings of a Symposium. Presented August 31–September 1, 1972, at the V General Assembly of the Special Committee for the International Biological Program, Seattle, Washington(pp. 1 – 12 ). Washington, DC: National Academy of Science.

    Google Scholar 

  • Wielgolaski, F.E., Bliss, L.C., Svoboda, J., and Doyle, G. 1981. Primary production of tundra. In: Bliss, L.C., Heal, O.W., and Moore, J J. (eds.), Tundra Ecosystems: A Comparative Analysis(pp. 187 – 225 ). Cambridge: Cambridge University Press.

    Google Scholar 

  • Zyryanov, V.A., and Kolpashchikov, L.A. 1981. Plant resources and their use by the wild reindeer in western Taimyr. In: Ekologiya i Khozyaistvennoe Ispol’zovanie Nazemnoy Fauny Eniseyskogo Sever a [Ecology and Economical Use of the Terrestrial Fauna of the Enisey North] (pp. 27–38). Novosibirsk.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Gilmanov, T.G. (1997). Phenomenological Models of the Primary Productivity of Zonal Arctic Ecosystems. In: Oechel, W.C., et al. Global Change and Arctic Terrestrial Ecosystems. Ecological Studies, vol 124. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2240-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2240-8_22

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7468-1

  • Online ISBN: 978-1-4612-2240-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics