Skip to main content

Modeling the Possible Impact of Climate Change on Broad-Scale Vegetation Structure: Examples from Northern Europe

  • Chapter
Global Change and Arctic Terrestrial Ecosystems

Part of the book series: Ecological Studies ((ECOLSTUD,volume 124))

Abstract

Climate has long been recognized as a major determinant of vegetation structure and composition (Woodward, 1987). Changes in climate, such as ambient temperature or the availability of light and moisture, are therefore likely to change vegetation on a relatively short time scale, such as years to decades. In fact, the connection between climate and vegetation has been considered so close that knowledge of past vegetation composition, derived from pollen, macrofossils, or other sources, could be used to reconstruct historical climatic patterns by analysis of the correlation between the presence of certain species and the climatic conditions. The key concepts that were developed for such paleoecological reconstruction have provided valuable contributions to the more recent development of predictive modeling of climate-vegetation interactions (see Huntley, Chapter 15).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alcamo, J. (ed.) 1994. IMAGE 2.0: Integrated Modeling of Global Climate Change. Dordrecht: Kluwer Academic.

    Google Scholar 

  • Box, E.O. 1981. Macroclimate and Plant Forms: An Introduction to Predictive Modeling in Phytogeography. The Hague: Dr. W. Junk.

    Google Scholar 

  • Bugmann, H. In press. Functional types of trees in temperate and boreal forests: Classification and testing. J. Vegetat. Sci.

    Google Scholar 

  • Claußen, M. 1994. On coupling global biome models with climate models. Clim. Res.4 (3): 203 – 221.

    Article  Google Scholar 

  • Cramer, W., and Fischer, A. In press. Data requirements for global terrestrial ecosystem modelling. In: Walker, B.E.A. (ed.), Invited Papers to the 1st Science Conference of IGBP-GCTE.

    Google Scholar 

  • Cramer, W., and Leemans, R. 1993. Assessing impacts of climate change on vegetation using climate classification systems. In: Solomon, A.M., and Shugart, H.H. (eds.), Vegetation Dynamics and Global Change(pp. 190 – 217 ). New York: Chapman and Hall.

    Chapter  Google Scholar 

  • Cramer, W., and Solomon, A.M. 1993. Climatic classification and future redistribution of global agricultural land. Clim. Res.3: 97 – 110.

    Article  Google Scholar 

  • Eamus, D., and Jarvis, P.G. 1989. The direct effects of increase in the global atmospheric CO2 concentration on natural and commercial temperate trees and forests. Adv. Ecol. Res.19: 1 – 55.

    Article  Google Scholar 

  • Elvebakk, A. 1985. Higher phytosociological syntaxa on Svalbard and their use in subdivision of the Arctic. Nord. J. Bot.5 (3): 273 – 284.

    Google Scholar 

  • Emanuel, W.R., Shugart, H.H., and Stevenson, M.P. 1985. Climatic change and the broad-scale distribution of terrestrial ecosystems complexes. Climatic Change7 (l): 29 – 43.

    Article  Google Scholar 

  • Esser, G., and Lautenschlager, M. 1994. Estimating the change of carbon in the terrestrial biosphere from 18,000 BP to present using a carbon cycle model. Environ. Pollut.83 (l–2): 45 – 53.

    Article  PubMed  CAS  Google Scholar 

  • Fischer, A., Louahala, S., Maisongrande, P., Kergoat, L., and Dedieu, G. Satellite data for monitoring, understanding and modelling of ecosystem functioning. In: Walker, B.E.A. (ed.), Invited Papers to the 1st Science Conference of IGBP- GCTE. In press.

    Google Scholar 

  • Gajewski, K., Payette, S., and Ritchie, J.C. 1993. Holocene vegetation history at the boreal-forest—shrub-tundra transition in North-Western Quebec. J. Ecol.81 (3): 433 – 443.

    Google Scholar 

  • Gleason, H.A. 1926. The individualistic concept of the plant association. Bull. Torrey Bot. Club57: 7 – 26.

    Article  Google Scholar 

  • Henderson-Sellers, A., and McGuffie, K. 1995. Global climate models and dynamic vegetation changes. Global Change Biol.1 (1): 63 – 75.

    Article  Google Scholar 

  • Holdridge, L.R. 1947. Determination of world plant formations from simple climatic data. Science105: 367 – 368.

    Article  PubMed  CAS  Google Scholar 

  • Holdridge, L.R. 1967. Life Zone Ecology, rev. ed. San Jose, Costa Rica: Tropical Science Center.

    Google Scholar 

  • Houghton, J.T., Callander, B.A., and Varney, S.K. (eds.) 1992. Climate Change 1992: The Supplementary Report to the IPCC Scientific Assessment. Cambridge: Cambridge University Press.

    Google Scholar 

  • Houghton, J.T., Jenkins, G.J., and Ephraums, J.J. (eds.) 1990. Climate Change: The IPCC Scientific Assessment. Cambridge: Cambridge University Press.

    Google Scholar 

  • Huntley, B., and Webb, T. III. (eds.) 1988. Vegetation History. Dordrecht: Kluwer Academic.

    Google Scholar 

  • Hutchinson, M.F., and Bischof, R.J. 1983. A new method for estimating the spatial distribution of mean seasonal and annual rainfall applied to the Hunter Valley, New South Wales. Aust. Meteorol. Mag.31: 179 – 184.

    Google Scholar 

  • Hutchinson, M.F., and Gessler, P.E. 1994. Splines—more than just a smooth interpolator. Geoderma62: 45 – 67.

    Article  Google Scholar 

  • Köppen, W. 1884. Die Wärmezonen der Erde, nach der Dauer der heissen, gemössigten und kalten Zeit und nach der Wirkung der Wärme auf die organische Welt betrachtet. Meteorol Z. 1: 215–226 (+map).

    Google Scholar 

  • Köppen, W. 1936. Das geographische System der Klimate. In: Köppen, W., and Geiger, R. (eds.), Handbuch der Klimatologie(pp. 1 – 46 ). Berlin: Gebrüder Bornträger.

    Google Scholar 

  • Kverndal, A.-I., Elvebakk, A., Jaworowski, Z., and Hansson, R. 1990. Virkninger av klimaendringer i polaromrädene—bidrag til den interdepartementale klimautredningen. Norsk Polarinstitutt. 82-90307-66-7.

    Google Scholar 

  • Leemans, R., and Cramer, W. 1991. The IIASA Database for Mean Monthly Values of Temperature, Precipitation and Cloudiness of a Global Terrestrial Grid. International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria. Research Report.

    Google Scholar 

  • Leemans, R., Cramer, W., and Van Minnen, J.G. In press. Prediction of global biome distribution using bioclimatic equilibrium models. In: Melillo, J.M., and Breymeyer, A. (eds.), C Cycling in Grassland and Forested Ecosystems. New York: SCOPE, John Wiley and Sons.

    Google Scholar 

  • Leemans, R., and Prentice, I.C. 1989. FORSKA, A General Forest Succession Model. Uppsala, Sweden: Department of Plant Ecology, Uppsala University.

    Google Scholar 

  • Melillo, J.M., McGuire, A.D., Kicklighter, D.W., Moore, B. III, Vörösmarty, C.J., and Schloss, A.L. 1993. Global climate change and terrestrial net primary production. Nature363: 234 – 240.

    Article  CAS  Google Scholar 

  • Merriam, C.H. 1898. Life zones and crop zones of the United States. Bulletin US Department of Agriculture, Division Biological Survey10.

    Google Scholar 

  • Monserud, R.A., and Leemans, R. 1992. Comparing global vegetation maps with the Kappa statistic. Ecol. Model.62: 275 – 293.

    Article  Google Scholar 

  • Nelson, F.E., and Anisimov, O.A. 1993. Permafrost zonation in Russia under anthropogenic climatic change. Permafrost Periglacial Proc. 4: 137 – 148.

    Article  Google Scholar 

  • Olson, J., Watts, J.A., and Allison, L.J. 1985. Major World Ecosystem Complexes Ranked by Carbon in Live Vegetation: A Database. Carbon Dioxide Information Center.

    Google Scholar 

  • Owensby, C.E. 1993. Potential impacts of elevated CO2 and aboveground and belowground litter quality of a tallgrass prairie. Water, Soil, Air Pollut. 70 (1– 4): 413 – 424.

    Article  CAS  Google Scholar 

  • Perlwitz, J. 1992. Preliminary results of a global SST anomaly experiment with a T42 GCM. In: VII General Assembly of the European Geophysical Society. Edinburgh, UK, April 6–10, 1992.

    Google Scholar 

  • Plöchl, M., and Cramer, W. 1995. Coupling global models of vegetation structure and ecosystem processes—An example from Arctic and Boreal ecosystems. Tellus Series B—Chem. Phys. Meteorol.47 (l/2): 240 – 250.

    Article  Google Scholar 

  • Prentice, I.C., Cramer, W., Harrison, S.P., Leemans, R., Monserud, R.A., and Solomon, A.M. 1992. A global biome model based on plant physiology and dominance, soil properties and climate. J. Biogeogr.19 (2): 117 – 134.

    Article  Google Scholar 

  • Prentice, I.C., Sykes, M.T., and Cramer, W. 1993a. A simulation model for the transient effects of climate change on forest landscapes. Ecol. Model. 65(1—2):51— 70.

    Google Scholar 

  • Prentice, I.C., Sykes, M.T., Lautenschlager, M., Harrison, S.P., Denissenko, O., and Bartlein, P.J. 1993b. Modelling global vegetation patterns and terrestrial carbon storage at the last glacial maximum. Global Ecol. Biogeogr. Lett.3 (3): 67 – 76.

    Article  Google Scholar 

  • Priestley, C.H.B., and Taylor, R.J. 1972. On the assessment of surface heat flux and evaporation using-large scale parameters. Monthly Weather Rev. 100 (2): 81 – 92.

    Article  Google Scholar 

  • Raunkiaer, C. 1907. Planterigets Livsformer. Copenhagen/Kristiania: Gyldendalske Boghandel and Nordisk Forlag.

    Google Scholar 

  • Row, L.W. III, Hastings, D.A., and Dunbar, P.K. 1995. TerrainBase—Wordwide Digital Terrain Data, Documentation Manual CD-ROM Release 1.0. National Geophysical Data Center. NGDC Key to Geophysical Records Documentation: 30.

    Google Scholar 

  • Sargent, N.E. 1988. Redistribution of the Canadian boreal forest under a warmed climate. Climatol. Bull.22 (3): 23 – 34.

    Google Scholar 

  • Shugart, H.H. 1984. A Theory of Forest Dynamics: The Ecological Implications of Forest Succession Models. New York: Springer-Verlag.

    Google Scholar 

  • Shugart, H.H., Leemans, R., and Bonan, G.B. (eds.) 1992. A Systems Analysis of the Global Boreal Forest. Cambridge: Cambridge University Press.

    Google Scholar 

  • Sirois, L., Bonan, G.B., and Shugart, H.H. 1994. Development of a simulation model of the forest tundra transition zone of northeastern Canada. Can. J. Forest Res. (Journal Canadien de la Recherche Forestiere)24 (4): 697 – 706.

    Article  Google Scholar 

  • Sjörs, H. 1963. Amphi-atlantic zonation, nemoral to arctic. In: Löve, A., and Löve, D. (eds.), North Atlantic Biota and their History(pp. 109 – 125 ). Oxford: Pergamon Press.

    Google Scholar 

  • Thornthwaite, C.W. 1948. An approach toward a rational classification of climate. Geogra. Rev.38 (l): 55 – 94.

    Article  Google Scholar 

  • Von Humboldt, A. 1807. Ideen zu einer Geographie der Pflanzen neben einem Naturgemälde der Tropenländer. Tubingen, Germany: Lotta.

    Google Scholar 

  • Walter, H. 1960. Einführung in die Phytologie. Grundlagen der Pflanzenverbreitung. Stuttgart: Gustav Fischer.

    Google Scholar 

  • Woodward, F.I. 1987. Climate and Plant Distribution. Cambridge: Cambridge University Press.

    Google Scholar 

  • Woodwell, G.M., and Houghton, R.A. 1993. Warming the north: What happens? In: Vinson, T., and Kolchugina, T.P. (eds.), Carbon Cycling in Boreal Forest and Subarctic Ecosystems: Bio-Spheric Responses and Feedbacks To Global Climate Change(pp. 1 – 8 ). Corvallis, Oregon: Environmental Research Laboratory, US. Environmental Protection Agency.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Cramer, W. (1997). Modeling the Possible Impact of Climate Change on Broad-Scale Vegetation Structure: Examples from Northern Europe. In: Oechel, W.C., et al. Global Change and Arctic Terrestrial Ecosystems. Ecological Studies, vol 124. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2240-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2240-8_17

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7468-1

  • Online ISBN: 978-1-4612-2240-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics