Skip to main content

The Role of Northern Ecosystems in the Global Methane Budget

  • Chapter
Global Change and Arctic Terrestrial Ecosystems

Part of the book series: Ecological Studies ((ECOLSTUD,volume 124))

Abstract

The concentration of atmospheric methane has doubled over the last century from a preindustrial concentration of 0.7ppmv (parts per million by volume) to the current level of 1.7ppmv (Bolin et al., 1994; Khalil and Rasmussen, 1987). Blake and Rowland (1988) estimated the globally averaged increase of atmospheric CH4 between 1978 and 1987 to nearly 16ppbv (parts per billion by volume) yr-1; however, this increase declined substantially during the late 1980s to around lOppbv yr-1 (Bolin et al., 1994). Although the trend in CH4 increase appears to have recently declined (Khalil and Rasmussen, 1992), data from 1993 suggest that atmospheric CH4 growth rates are on the rise again (Bolin et al., 1994).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aselmann, I., and Crutzen, P.J. 1989. Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions. J. Atmos. Chem.8: 307 – 358.

    Article  CAS  Google Scholar 

  • Baldocchi, D.D., Hicks, B.B., and Meyers, T.P. 1988. Measuring biosphere- atmosphere exchanges of biologically related gases with micrometeorological methods. Ecology69 (5): 1331 – 1340.

    Article  Google Scholar 

  • Bartlett, K.B., Crill, P.M., Sass, R.L., Harriss, R.C., and Dise, N.B. 1992. Methane emissions from tundra environments in the Yukon-Kuskokwim Delta, Alaska. 97:16, 645 – 16, 660.

    Google Scholar 

  • Beltrami, H., and Mareshal, J.C. 1991. Recent warming in eastern Canada inferred from geothermal measurements. Geophys. Res. Lett.18: 605 – 608.

    Article  Google Scholar 

  • Billings, W.D. 1987. Carbon balance of Alaskan tundra and taiga ecosystems: Past, present, and future. Quat. Sci. Rev.6: 165 – 177.

    Google Scholar 

  • Blake, D.R., and Rowland, F.S. 1987. Continuing worldwide increase in tropo- spheric methane, 1979 to 1987. Science239: 1129 – 1131.

    Article  Google Scholar 

  • Bolin, B., Houghton, J., and Meira-Filho, L.G. 1994. Radiative Forcing of Climate Change: The 1994 Report of the Scientific Assessment Working Group of IPCC. World Meteorological Office.

    Google Scholar 

  • Born, M., Dorr, H., and Levin, 1. 1990. Methane consumption in aerated soils of the temperate zone. Tellus42B: 2 – 8.

    Google Scholar 

  • Bubier, J.L., Moore, T.R., and Roulet, N.T. 1993. Methane emissions from wetlands in the midboreal region of northern Ontario, Canada. Ecology74: 2240 – 2254.

    Article  Google Scholar 

  • Chapman, W.L., and Walsh, J.E. 1993. Recent Variations of Sea Ice and Air Temperature in High Latitudes. Bull. Am. Meteorol. Soc.74: 33 – 47.

    Article  Google Scholar 

  • Christensen, T.R. 1993. Methane emission from arctic tundra. Bio geochemistry21: 117 – 139.

    CAS  Google Scholar 

  • Cicerone, R.J., and Oremland, R.S. 1988. Biogeochemical aspects of atmospheric methane. Global Biogeochem. Cycles2: 299 – 327.

    Article  CAS  Google Scholar 

  • Crill, P.M., Bartlett, K.B., Harriss, R.C., Gorham, E., Verry, E.S., Sebacher, D.I., Madzar, L., and Sanner, W. 1988. Methane flux from Minnesota peatlands. Global Biogeochem. Cycles2: 371 – 384.

    Article  CAS  Google Scholar 

  • Delwiche, C.C., and Cicerone, R.J. 1993. Factors affecting methane production under rice. Global Biogeochem. Cycles7: 143 – 156.

    Article  Google Scholar 

  • Dise, N.B. 1993. Methane emission from Minnesota peatlands: Spatial and seasonal variability. Global Biogeochem. Cycles7: 123 – 142.

    Article  Google Scholar 

  • Donner, L., and Ramanathan, V. 1980. Methane and nitrous oxide: Their effects on the terrestrial climate. J. Atmos. Sci.37: 119 – 124.

    Article  CAS  Google Scholar 

  • Fan, S.M., Wofsy, S.C., Bakwin, P.S., Jacob, D.J., Anderson, S.M., Kebabian, P.L., McManus, J.B., Kolb, C.E., and Fitzjarrald, D.R. 1992. Micrometeorological measurements of CH4 and CO2 exchange between the atmosphere and subarctic tundra. J. Geophys. Res. 97:16, 627 – 16, 643.

    Google Scholar 

  • Fechner, E.J., and Hemond, H.F. 1992. Methane transport and oxidation in the unsaturated zone of a Sphagnum peatland. Global Biogeochem. Cycles6: 33 – 44.

    Article  CAS  Google Scholar 

  • Freeman, C., Lock, M.A., and Reynolds, B. 1993. Fluxes of C02, CH4 and N20 from a Welsh peatland following simulation of water table draw-down: Potential feedback to climate change. Biogeochemistry19: 51 – 60.

    Article  Google Scholar 

  • Fung, I., John, J., Lerner, J., Mathews, E., Prather, M., Steele, L.P., and Frases, P.J. 1991. Three-dimensional model synthesis of the global methane cycle. J. Geophys. Res. 96:13, 033 – 13, 065.

    Google Scholar 

  • Funk, D.W., Pullman, E.R., Peterson, K.M., Crill, P.M., and Billings, W.D. 1994. Influence of water table on carbon dioxide, carbon monoxide, and methane fluxes from taiga bog microcosms. Global Biogeochem. Cycles8: 271 – 278.

    Article  CAS  Google Scholar 

  • Gash, J.H.C. 1986. A note on estimating the effect of a limited fetch on micrometeorological evaporation measurements. Boundary-Layer Meteorol35: 409 – 413.

    Article  Google Scholar 

  • Gates, W.L., Mitchell, J.F.B., Boer, G.J., Cubasch, U., and Meleshko, V.P. 1992. Climate modeling, climate prediction and model validation. In: Houghton, J.T., Callander, B.A., and Varney, S.K. (eds.), Climate Change 1992: The Supplemental Report to the IPCC Scientific Assessment(pp. 97 – 135 ). Cambridge: Cambridge University Press.

    Google Scholar 

  • Gorham, E. 1991. Northern peatlands: Role in the carbon cycle and probable responses to climate warming. Ecol. Appl.1: 182 – 195.

    Article  Google Scholar 

  • Groisman, P.Y., Karl, T.R., and Knight, R.W. 1994. Observed impact of snow cover on the heat balance and rise of continental spring temperatures. Science 263:198– 200.

    Google Scholar 

  • Harriss, R., Bartlett, K., Frolking, S., and Crill, P. 1991. Methane emissions from northern high-latitude wetlands. In: Biogeochemistry of Global Change: Radiatively Active Trace Gases(pp. 449 – 486 ). Tenth International Symposium on Environmental Biogeochemistry. New York: Chapman and Hall.

    Google Scholar 

  • Hastie, D.R., Mackay, G.L, Iguchi, T., Ridley, B.A., and Schiff, H.I. 1983. Tunable diode laser systems for measuring trace gases in tropospheric air. Environ. Sci. Technol.17: 352 – 364.

    Article  Google Scholar 

  • Hicks, B.B. 1989. Regional Extrapolation: Vegetation-Atmosphere Approach. In: Andreas, M.O., and Schimol, D.S. (eds.), Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere, (pp. 109 – 118 ). New York: John Wiley & Sons.

    Google Scholar 

  • Hinzman, L.D., and Kane, D.L. 1992. Potential response of an arctic watershed during a period of global warming. J. Geophys. Res.97: 2811 – 2820.

    Google Scholar 

  • Hobbie, J.E., Traaen, T., Rublee, P., Reed, J.P., Miller, M.C., and Fenchel, T. 1980. Decomposers, bacteria, and microbenthos. In: Hobbie, J.E. (ed.), Limnology of Tundra Ponds(pp. 340 – 387 ). Stroudsburg, PA: Dowden, Hutchinson, and Ross.

    Chapter  Google Scholar 

  • Hovde, D.C., Meyers, T.P., Stanton, A.C., and Matt, D.R. Methane emissions from a landfill measured by eddy correlation using a fast response diode laser sensor. J. Atmos. Chem. In press.

    Google Scholar 

  • Kane, D.L., Gieck, R.E., and Hinzman, D.L. 1990. Evapotranspiration from a small arctic watershed. Nordic Hydrol. 21: 253 – 272.

    Google Scholar 

  • Kane, D.L., Hinzman, L.D., Woo, M.K., and Everett, K.R. 1992. Arctic Hydrology and Climate Change. In: Chapin, F.S., III, Jefferies, R., Shaver, G., Reynolds, J., and Svoboda, J. (eds.), Physiological Ecology of Arctic Plants: Implications for Climate Change(pp. 35 – 57 ). New York: Academic Press.

    Google Scholar 

  • Karl, T.R., Kukla, G., Razuvayev, V.N., Changery, M.J., Quayle, R.G., Heim, R.R., Easterling, D.R., and Fu, C.B. 1991. Global warming: Evidence for assymetric diurnal temperature change. Geophys. Res. Lett.18: 2253 – 2256.

    Article  Google Scholar 

  • Khalil, M.A.K., and Rasmussen, R.A. 1987. Atmospheric methane: trends over the last 10,000 years. Atmos. Environ.21 (ll): 2445 – 2452.

    CAS  Google Scholar 

  • Khalil, M.A.K., and Rasmussen, R.A. 1992. Decline in the trend of atmospheric methane. In: Ferguson, E.E., and Rosson, R.M. (eds.), U.S. Department of Commerce, National Oceanic and Atmospheric Administration, Climate Monitoring and Diagnostics Laboratory Summary Report No. 20 (pp. 105 – 107 ). Boulder, CO.

    Google Scholar 

  • Khalil, M.A.K., Rasmussen, R.A., Shearer, M.J., Ge, S., and Rau, J.A. 1993. Methane from coal burning. Chemosphere 26:413-All.

    Google Scholar 

  • Klinger, L.F., Zimmerman, P.R., Greenberg, J.P., Heidt, L.E., and Guenther, A.B. 1994. Carbon trace gas fluxes along a successional gradient in the Hudson Bay lowland. J. Geophys. Res.99: 1469 – 1494.

    Article  CAS  Google Scholar 

  • Lachenbruch, A.H., and Marshall, B.V. 1986. Changing Climate: Geothermal Evidence from Permafrost in the Alaskan Arctic. Science234: 689 – 696.

    Article  PubMed  CAS  Google Scholar 

  • Lashof, D.A., and Ahuja, D.R. 1990. Relative contributions of greenhouse gas emissions to global warming. Nature344: 529 – 531.

    Article  CAS  Google Scholar 

  • Manabe, S., and Stouffer, R.J. 1993. Century-scale effects of increased atmnospheric CO2 on the ocean-atmosphere system. Nature364: 215 – 218.

    Article  CAS  Google Scholar 

  • Mathews, E., and Fung, I. 1987. Methane emission from natural wetlands: Global distribution, area, and environmental characteristics of sources. Global Biogeochem. Cycles1: 61 – 86.

    Article  Google Scholar 

  • Meehl, G.A., Washington, W.M., and Karl, T.R. 1993. Low-frequency variability and CO2 transient climate change: Part 1. Time averaged differences. Clim. Dynam.8: 117 – 133.

    Article  Google Scholar 

  • Miller, P.C., Kendall, R., and Oechel, W.C. 1983. Simulating carbon accumulation in northern ecosystems. Simulation40: 119 – 131.

    Article  CAS  Google Scholar 

  • Mitchell, J.F.B., Senior, C.A., and Ingram, W.J. 1989. C02 and climate: A missing feedback? Nature341: 132 – 134.

    Article  Google Scholar 

  • Moore, T.R., Heyes, A., and Roulet, N.T. 1994. Methane emissions from wetlands, southern Hudson Bay lowland. J. Geophys. Res.99: 1455 – 1467.

    Article  CAS  Google Scholar 

  • Moore, T:R., Roulet, N., and Knowles, R. 1990. Spatial and temporal variations of methane flux from subarctic/northern boreal fens. Global Biogeochem. Cycles. 4:29–46.

    Google Scholar 

  • Morrissey, L.A., and Livingston, G.P. 1992. Methane emissions from Alaska arctic tundra: An assessment of local spatial variability. J. Geophys. Res. 97:16,661– 16, 670.

    Google Scholar 

  • Neilson, R.P. 1993. Vegetation redistribution: A possible biosphere source of C02 during climatic change. Water, Soil, Air Pollut. 70: 659 – 673.

    Article  Google Scholar 

  • Oechel, W.C., Hastings, S.J., Vourlitis, G.L., Jenkins, M., Riechers, G., and Grulke, N. 1993. Recent change of arctic tundra ecosystems from a net carbon dioxide sink to a source. Nature361: 520 – 523.

    Article  Google Scholar 

  • Oechel, W.C., and Vourlitis, G.L. 1995. Effects of global change on carbon storage in cold soils. In: Lai, R., Kimbel, J., Levine, E., and Stewart, B.A. (eds.), Advances in Soil Science: Soils and Global Change(pp. 117 – 129 ). Boca Raton, FL: Lewis Publishers.

    Google Scholar 

  • Panikov, N., and Zelenev, V. 1991. Methane and carbon dioxide production and uptake in some boreal ecosystems of Russia. In: Vinson, T.S., and Kolchugina, T.P. (eds.), Carbon Cycling in Boreal Forests and Sub-arctic Ecosystems (pp. 125–138). Washington, DC: United States Environmental Protection Agency Report EPA/600R-93/084, Office of Research and Development.

    Google Scholar 

  • Paul, E.A., and Clark, F.E. 1989. Soil Microbiology and Biochemistry. San Diego: Academic Press.

    Google Scholar 

  • Ramanathan, V., Cicerone, H.B., Singh, H.B., and Kiehl, J.T. 1985. Trace gas trends and their potential role in climate change. J. Geophys. Res.90: 5547 – 5566.

    Article  CAS  Google Scholar 

  • Rastetter, E.B., King, A.W., Cosby, B.J., Hornberger, G.M., O’Neill, R.V., and Hobbie, J.E. 1992. Aggregating fine-scale ecological knowledge to model coarse scale attributes of ecosystems. Ecol. Appl. 2: 55 – 70.

    Article  Google Scholar 

  • Reeburgh, W.S., and Whalen, S.C. 1992. High-latitude ecosystems as CH4 sources. Ecol Bull42: 62 – 70.

    CAS  Google Scholar 

  • Reeburgh, W.S., Roulet, N.T., and Svensson, B.H. 1994. Terrestrial biosphere- atmosphere exchange in high latitudes. In: Prinn, R.G. (ed.), Global Atmo- spheric-Biospheric Chemistry(pp. 165 – 178 ). New York: Plenum Press.

    Google Scholar 

  • Reeburgh, W.S., Whalen, S.C., and Alperin, M.J. 1993. The role of methyltrophy in the global methane budget. In: Murrell, J.C., and Kelley, D. (eds)., Microbial Growth on C i Compounds(pp. 1 – 14 ). Andover, UK: Intercept.

    Google Scholar 

  • Ritter, J.A., Barrick, J.D.W., Sachse, G.W., Gregory, G.L., Woerner, M.A., Watson, C.E., Hill, G.F., and Collins, Jr, J.E. 1992. Airborne flux measurements of trace species in an arctic boundary layer. J. Geophys. Res. 97:16,601– 16, 625.

    Google Scholar 

  • Roulet, N.T., Ash, R., and Moore, T.R. 1992. Low boreal wetlands as a source of atmospheric methane. J. Geophys. Res.97: 3739 – 3749.

    CAS  Google Scholar 

  • Roulet, N.T., Jano, A., Kelley, C.A., Klinger, L.F., Moore, T.R., Protz, R., Ritter, J.A., and Rouse, W.R. 1994. Role of the Hudson Bay lowland as a source of atmospheric methane. J. Geophys. Res.99: 1439 – 1454.

    Article  CAS  Google Scholar 

  • Schlesinger, M.E., and Xingjian, J. 1991. Revised projection of future greenhouse warming. Nature350: 219 – 221.

    Article  Google Scholar 

  • Schlesinger, W.H. 1991. Bio geochemistry: An Analysis of Global Change. San Diego, CA: Academic Press.

    Google Scholar 

  • Schuepp, P.H., Leclerc, M.Y., MacPherson, J.I., and Desjardins, R.L. 1990. Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation. Boundary-Layer Meteorol. 50: 355 – 374.

    Article  Google Scholar 

  • Sebacher, D.I., Harriss, R.C., and Bartlett, K.B. 1985. Methane emissions to the atmosphere through aquatic plants. J. Environ. Qual.14: 40 – 46.

    Article  CAS  Google Scholar 

  • Sebacher, D.I., Harriss, R.C., Bartlett, K.B., Sebacher, S.M., and Grice, S.S. 1986. Atmospheric methane sources: Alaskan tundra bogs, an alpine fen, and a subarctic boreal marsh. Tellus38B: 1 – 10.

    Article  CAS  Google Scholar 

  • Smith, T.M., and Shugart, H.H. 1993. The transient response of terrestrial carbon storage to a perturbed climate. Nature361: 523 – 526.

    Article  Google Scholar 

  • Svensson, B.H., and Rosswall, T. 1984. In situ methane production from acid peat in plant communities with different moisture regimes in a subarctic mire. Oikos43: 341 – 350.

    Article  CAS  Google Scholar 

  • Svensson, B.N. 1984. Different temperature optima for methane formation, when enrichments from acid peat are supplemented with acetate or hydrogen. Appl. Environ. Microbiol.48: 389 – 394.

    PubMed  CAS  Google Scholar 

  • Torn, M.S., and Chapin, F.S. III. 1993. Environmental and biotic controls over methane flux from arctic tundra. Chemosphere26: 357 – 368.

    Article  CAS  Google Scholar 

  • Valentine, D.W., Holland, E.A., and Schimel, D.S. 1994. Ecosystem and physiological controls over methane production in northern wetlands. J. Geophys. Res.99: 1563 – 1571.

    Article  CAS  Google Scholar 

  • Verma, S.B. 1990. Micrometeorological methods for measuring surface fluxes of mass and energy. Rem. Sens. Rev.5 (1): 99 – 115.

    Google Scholar 

  • Verma, S.B., Ullman, F.G., Billesbach, D., Clement, R.J., Kimm, J., and Verry, E.S. 1992. Eddy correlation measurements of CH4 flux in a northern peatland ecosystem. Boundary-Layer Meteorol. 58: 289 – 304.

    Article  Google Scholar 

  • Vourlitis, G.L., Oechel, W.C., Hastings, S.J., and Jenkins, M.A. 1994. The effect of soil moisture and thaw depth on CH4 flux from wet coastal tundra ecosystems on the North Slope of Alaska. Chemosphere28: R1 - R3.

    Article  Google Scholar 

  • Waelbroeck, C. 1993. Climate-soil processes in the presence of permafrost: a systems modeling approach. Ecol. Model.69: 185 – 225.

    Article  Google Scholar 

  • Watson, R.T., Meira Filho, L.G., Sanhueza, E., and Janetos, A. 1992. Sources and sinks. In: Houghton, J.T., Callander, B.A., and Varney, S.K. (eds.), Climate Change 1992: The Supplemental Report to the 1PCC Scientific Assessment(pp. 24 – 46 ). Cambridge: Cambridge University Press.

    Google Scholar 

  • Westermann, P., Ahring, B.K., and Mah, R.A. 1989. Temperature conpensation in Methanosarcina barkeri by modulation of hydrogen and acetate affinity. Appl. Environ. Microbiol.55: 1262 – 1266.

    PubMed  CAS  Google Scholar 

  • Whalen, S.C., and Reeburgh, W.S. 1990. A methane flux transect along the trans- Alaska pipeline haul road. Tellus42B: 237 – 249.

    Google Scholar 

  • Whalen, S.C., and Reeburgh, W.S. 1990b. Consumption of artmospheric methane by tundra soils. Nature346: 160 – 162.

    Article  CAS  Google Scholar 

  • Whalen, S.C., and Reeburgh, W.S. 1992. Interannual variations in tundra methane emission: A 4-year time series at fixed sites. Global Biogeochem. Cycles6:139– 160.

    Google Scholar 

  • Whalen, S.C., Reeburgh, W.S., and Kizer, K.S. 1991. Methane consumption and emission by Taiga. Global Biogeochem. Cycles5: 261 – 273.

    Article  CAS  Google Scholar 

  • Whiting, G.J., and Chantcn, J.P. 1993. Primary production control of methane emission from wetlands. Nature364: 794 – 795.

    Article  CAS  Google Scholar 

  • Yavitt, J.B., Lang, G.E., and Downey, D.M. 1988. Potential methane production and methane oxidation rates in peatland ecosystems of the Appalachian Mountains. Global Biogeochem. Cycles2: 253 – 268.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Vourlitis, G.L., Oechel, W.C. (1997). The Role of Northern Ecosystems in the Global Methane Budget. In: Oechel, W.C., et al. Global Change and Arctic Terrestrial Ecosystems. Ecological Studies, vol 124. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2240-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2240-8_15

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7468-1

  • Online ISBN: 978-1-4612-2240-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics