Climate Change and Future Position of Arctic Tree Line

  • Peter A. Scott
  • Claude Lavoie
  • Glen M. MacDonald
  • Bjartmar Sveinbjörnsson
  • Ross W. Wein
Part of the Ecological Studies book series (ECOLSTUD, volume 124)

Abstract

Studies of northern circumpolar tree line have related tree distribution to numerous environmental controls, such as permafrost, moisture, heat, radiation, and frontal circulation patterns (Barry, 1967; Bryson, 1966; Hare and Ritchie, 1972; Hustich, 1966; Larsen, 1989). Recent modeling experiments indicate that the circumpolar tree line could be shifted north tens to hundreds of kilometers if anticipated magnitudes of global warming due to increases in atmospheric greenhouse gasses are realized (e.g., Emmanuel et al., 1985; Rizzo and Wiken, 1992). Detecting and migitating the negative impacts of such vegetation shifts requires an understanding of the dynamics of tree line-climate interrelations. In this chapter we review some of the data and current concepts regarding climate-vegetation dynamics at the circumpolar tree line. In an effort to evaluate the mechanisms responsible for forest development we review selected northern European and North American studies of northern forests, the tree line, and forest-tundra, and evaluate the dominant influences and processes of forest development at the forest edge. We synthesize this information to suggest how the tree line might react in real terms to future climate warming.

Keywords

Burning Carbohydrate Respiration Germinate Photosynthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abadie, W.D. 1991. Growth and carbon flux of white spruce at different elevations in the Chugach Mountains, Alaska. M.Sc. thesis, University of Alaska at Anchorage.Google Scholar
  2. Arseneault, D., and Payette, S. 1992. A postfire shift from lichen-spruce to lichen- tundra vegetation at tree line. Ecology73: 1067 – 1081.CrossRefGoogle Scholar
  3. Barry, R.G. 1967. Seasonal location of the Arctic Front over North America. Geogr. Bull.9: 79 – 95.Google Scholar
  4. Bégin, C. 1991. Analyse architecturale et dendroécologique d’une pessière à lichens à la limite des forêts. Ph.D. dissertation, Université Laval.Google Scholar
  5. Bégin, Y., and Payette, S. 1988. Dendroecological evidence of lake-level changes during the last three centuries in subarctic Québec. Quat. Res.30: 210 – 220.CrossRefGoogle Scholar
  6. Black, R.A., and Bliss, L.C. 1980. Reproductive ecology of Picea mariana(Mill.) BSP., at treeline near Inuvik, Northwest Territories, Canada. Ecol. Monogr.50: 331 – 354.CrossRefGoogle Scholar
  7. Brubaker, L.E., Garfinkel, H.L., and Edwards, M.E. 1983. A late Wisconsin and Holocene vegetation history from the central Brooks Range: Implications for Alaskan palaeoecology. Quat. Res.20: 194 – 214.CrossRefGoogle Scholar
  8. Bryson, R.A. 1966. Air masses, streamlines, and the boreal forest. Geogr. Bull.8: 228 – 269.Google Scholar
  9. Chapin, F.S., III. 1986. Controls over growth and nutrient use by taiga forest trees. In: Van Cleve, K., Chapin, F.S., III, Flanagan, P.W., Viereck, L.A., and Dyrness, C.T. (eds.), Forest Ecosystems in the Alaska Taiga(pp. 96 – 111 ). New York: Springer-Verlag.Google Scholar
  10. Davis, J., Schober, A., Bahn, M., and Sveinbjörnsson, B. 1991. Soil carbon and nitrogen turnover at and below the elevational treeline in northern Fennoscandia. Arctic Alpine Res. 23: 279 – 286.CrossRefGoogle Scholar
  11. Day, T.A., Heckathorn, S.A., and DeLucia, E.H. 1991. Limitations of photosynthesis in Pinus taedaL. (Loblolly Pine) at low soil temperatures. Plant Physiol. 96: 1246 – 1254.PubMedCrossRefGoogle Scholar
  12. DeLucia, E.H. 1986. Effect of low root temperature on the net photosysnthesis, stomatal conductance and carbohydrate concentration in Engelmann spruce (Picea engelmanniiParry exEngelm.) seedlings. Tree Physiol2: 143 – 154.PubMedGoogle Scholar
  13. DeLucia, E.H., and Smith, W.K. 1987. Air and soil temperature limitations on photosynthesis in Englemann spruce during summer. Can. J. Forest Res. 17:527– 533.Google Scholar
  14. Elliot, D.L. 1979. The current regenerative capacity of northern Canadian trees, Keewatin, N.W.T., Canada: Some preliminary observations. Arctic Alpine Res. 11: 243 – 251.CrossRefGoogle Scholar
  15. Emmanuel, W.R., Shugart, H.H., and Stevenson, M.P. 1985. Climatic change and broad-scale distribution of terrestrial ecosystem complexes. Climatic Change7: 29 – 44.CrossRefGoogle Scholar
  16. Filion, L., and Payette, S. 1983. Régime nival et végétation chionophile à Poste-de- la-Baleine, Nouveau-Quebéc. Nat. Can.109: 557 – 571.Google Scholar
  17. Filion, L., Payette, S., and Gauthier, L. 1985. Analyse dendroclimatique d’un krummholz à la limite des arbres, lac Bush, Québec nordique. Geogr. Phys. Quat.39: 221 – 226.Google Scholar
  18. Flanagan, P.W., and Van Cleve, K. 1983. Nutrient cycling in relation to decomposition and organic matter quality in taiga ecosystems. Can. J. Forest Res. 13:795– 817.Google Scholar
  19. Gajewski, K., Payette, S., and Ritchie, J.C. 1993. Holocene vegetation history at the boreal-forest—shrub-tundra transition in north-western Québec. J. Ecol.81: 433 – 443.CrossRefGoogle Scholar
  20. Gill, D. 1975. Influence of white spruce trees on permafrost-table microtopography, MacKenzie River Delta. Can. J. Earth Sci.12: 263 – 272.CrossRefGoogle Scholar
  21. Goldstein, G.H. 1981. Ecophysiological and demographic studies of white spruce (Picea glauca[Moench] Voss) at treeline in the Central Brooks Range of Alaska. Ph.D. dissertation, University of Washington.Google Scholar
  22. Hadley, J.L., and Smith, W.K. 1983. Influence of wind exposure on needle desiccation and mortality for timberline conifers in Wyoming, U.S.A. Arctic Alpine Res. 15: 127 – 135.CrossRefGoogle Scholar
  23. Hadley, J.L., and Smith, W.K. 1989. Wind erosion of leaf surface wax in alpine timberline conifers. Arctic Alpine Res. 21: 392 – 398.CrossRefGoogle Scholar
  24. Hansen-Bristow, K.J. 1986. Influence of increasing elevation on growth characteristics at timberline. Can. J. Bot.64: 2517 – 2523.CrossRefGoogle Scholar
  25. Hare, F.K., and Ritchie, J.C. 1972. The boreal bioclimates. Geogr. Rev.62: 333 – 365.CrossRefGoogle Scholar
  26. Holtmeier, F.-K., and Broil, G. 1992. The influence of tree islands and microtopography on pedoecological conditions in the forest-alpine tundra eco- tone on Niwot Ridge, Colorado Front Range, U.S.A. Arctic Alpine Res. 24: 216 – 228.CrossRefGoogle Scholar
  27. Hustich, I. 1966. On the forest-tundra and northern treelines. Ann. Univ. TurkuA. 11: 7 – 47.Google Scholar
  28. Hustich, 1. 1979. Ecological concepts and biogeographical zonation in the north: The need for a generally accepted terminology. Holarctic Ecol. 2: 208 - 217.Google Scholar
  29. Johnson, E.A. 1975. Buried seed populations in the subarctic forest east of Great Slave Lake, Northwest Territories. Can. J. Bot.53: 2933 – 2941.CrossRefGoogle Scholar
  30. Johnson, E.A. 1992. Fire and Vegetation Dynamics: Studies from the North American Boreal Forest. New York: Cambridge University Press.CrossRefGoogle Scholar
  31. Jones, P.D., Raper, S.C.B., Bradley, R.S., Diaz, H.F., Kelly, P.M., and Wigley, T.M.L. 1986. Northern Hemisphere surface air temperature variations: 1851— 1984. J. Climate Appl. Meteorol.25: 161 - 179.CrossRefGoogle Scholar
  32. Khotinsky, N.A. 1983. Holocene vegetation history. In: Velichko, A.A. (ed.), Late Quaternary Environments of the Soviet Union(pp. 179 - 200 ). Minneapolis: University of Minnesota Press.Google Scholar
  33. Kullman, L. 1979. Change and stability in the altitude in the birch tree-limit in the southern Swedish Scandes 1915-1975. Acta Phytogeogr. Suecicam65: 1 - 121.Google Scholar
  34. Kullman, L. 1990. Dynamics of altitudinal tree-limits in Sweden: a review. Norsk Geografisk Tidsskrift44: 103 - 116.CrossRefGoogle Scholar
  35. Kullman, L., and Engelmark, O. 1991. Historical biogeography of Picea abies(L.) Karst. at its subarctic limit in northern Sweden. J. Biogeogr.18: 63 - 70.CrossRefGoogle Scholar
  36. Kullman, L., and Hogberg, N. 1989. Rapid natural decline of upper montane forests in the Swedish Scandes. Arctic42: 217 - 226.Google Scholar
  37. Landhäusser, S.M., and Wein, R.W. 1993. Post-fire vegetation recovery and tree establishment at the arctic treeline: Climate-change-vegetation-response hypothesis. 7. Ecol. 81: 665 - 672.CrossRefGoogle Scholar
  38. Larsen, J.A. 1989. The Northern Forest Border in Canada and Alaska. New York: Springer-Verlag.Google Scholar
  39. Lavoie, C., and Payette, S. 1992. Black spruce growth forms as a record of a changing winter environment at treeline, Quebec, Canada. Arctic Alpine Res. 24: 40 - 49.CrossRefGoogle Scholar
  40. Lavoie, C., and Payette, S. 1994. Recent fluctuations of the lichen-spruce forest limit in subarctic Quebec. J. Ecol.82: 725 - 734.CrossRefGoogle Scholar
  41. MacDonald, G.M., Edwards, T.W.D., Moser, K.A., Pienitz, R., and Smol, J.P. 1993. Rapid response of treeline vegetation and lakes to past climate warming. Nature361: 243 - 246.CrossRefGoogle Scholar
  42. Marr, J.W. 1948. Ecology of the forest-tundra ecotone on the east coast of Hudson Bay. Ecol Monogr. 18: 117 - 144.CrossRefGoogle Scholar
  43. Masuzawa, T. 1985. Ecological studies on the timberline of Mt. Fuji. I. Structure of plant community and soil development on the timberline. Bot. Mag. Tokyo98: 15 - 28.CrossRefGoogle Scholar
  44. Morneau, C., and Payette, S. 1989. Postfire lichen-spruce woodland recovery at the limit of the boreal forest in northern Québec. Can. J. Bot.67: 2770 - 2782.CrossRefGoogle Scholar
  45. Odin, H., and Degermark, C. 1990. The spring in the forest terrain at Svartberget, northern Sweden. Geogr. Annaler72A: 167 - 178.CrossRefGoogle Scholar
  46. Oechel, W.C., and Van Cleve, K. 1986. The role of bryophytes in nutrient cycling in the taiga In: Van Cleve, K., Chapin, F.S., III, Flanagan, P.W., Viereck, L.A., and Dyrness, C.T. (eds.), Forest Ecosystems in the Alaska Taiga(pp. 121-137). New York: Springer-Verlag.Google Scholar
  47. Olsen, S.K. 1993. Simulated fire severity and seedling growth at treeline: A climate change analogue. M.Sc. thesis, University of Alberta, Edmonton.Google Scholar
  48. Payette, S. 1983. The forest-tundra and present treelines of the northern Quebec- Labrador peninsula. Nordicana47: 3 - 23.Google Scholar
  49. Payette, S., and Delwaide, A. 1991. Variations séculaires du niveau d’eau dans le bassin de la riviere Boniface (Quebéc nordique): Une analyse dendroécologique. Geogr. Phys. Quat.45: 59 - 67.Google Scholar
  50. Payette, S., and Filion, L. 1985. White spruce expansion at the treeline and recent climatic change. Can. J. Forest Res.15: 241 - 251.CrossRefGoogle Scholar
  51. Payette, S., and Gagnon, R. 1985. Late Holocene deforestation and tree regeneration in the forest-tundra of Quebec. Nature313: 570 - 572.CrossRefGoogle Scholar
  52. Payette, S., Deshaye, J., and Gilbert, H. 1982. Tree seed populations at the treeline in Rivière aux Feuilles area, Northern Québec, Canada. Arctic Alpine Res. 14: 215 - 221.CrossRefGoogle Scholar
  53. Payette, S., Morneau, C., Sirois, L., and Desponts, M. 1989. Recent fire history of the northern Quebec biomes. Ecology70: 656 – 673.CrossRefGoogle Scholar
  54. Pearce, C.M., McLennan, D., and Cordes, L.D. 1988. The evolution and maintenance of white spruce woodlands on the Mackenzie Delta, N.W.T., Canada. Holarctic Ecol. 11: 248 – 258.Google Scholar
  55. Ritchie, J.C. 1984. Past and Present Vegetation of the Far Northwest of Canada, Toronto: University of Toronto Press.Google Scholar
  56. Ritchie, J.C., Cwynar, L.C., and Spear, R.A. 1983. Evidence from north-west Canada for an early Holocene Milankovitch thermal-maximum. Nature305: 126 – 128.CrossRefGoogle Scholar
  57. Rizzo, B., and Wiken, E. 1992. Assessing the sensitivity of Canada’s ecosystems to climatic change. Climatic Change21: 37 – 55.CrossRefGoogle Scholar
  58. Rouse, W.R. 1982. Microclimate of low arctic tundra and forest at Churchill, Manitoba. In: Proceedings of the Fourth Canadian Permafrost Conference(pp. 68 - 80 ). Ottawa: National Research Council.Google Scholar
  59. Rouse, W.R. 1984. Microclimate of the arctic treeline 1. Radiation balance of tundra and forest. Water Resources Res. 20: 56 – 66.Google Scholar
  60. Scott, P.A. 1994. Influence of summer heat availability on forest establishment at the treeline near Churchill, Manitoba. Ph.D. dissertation, University of Toronto.Google Scholar
  61. Scott, P.A., Hansell, R.I.C., and Erickson, W.R. 1993a. Influences of wind and snow on treeline environments at Churchill, Manitoba, Canada. Arctic46: 316 – 323.Google Scholar
  62. Scott, P.A., Hansell, R.I.C., and Fayle, D.C.F. 1987b. Establishment of white spruce populations and responses to climatic change at the treeline, Churchill, Manitoba, Canada. Arctic Alpine Res. 19: 45 – 51.CrossRefGoogle Scholar
  63. Scott, P.A., Staniforth, R.J., and Hansell, R.I.C. 1993c. Responses of white spruce to tundra environments: Woodland development (unpublished manuscript).Google Scholar
  64. Scott, P.A., Bentley, C.V., Fayle, D.C.F., and Hansell, R.I.C. 1987a. Crown forms and shoot elongation of white spruce at the treeline, Churchill, Manitoba, Canada. Arctic Alpine Res. 19: 175 – 186.CrossRefGoogle Scholar
  65. Scott, P.A., Fayle, D.C.F., Bentley, C.V., and Hansell, R.I.C. 1988. Large scale changes in atmospheric circulation interpreted from patterns of tree growth at Churchill, Manitoba, Canada. Arctic Alpine Res. 20: 199 – 211.CrossRefGoogle Scholar
  66. Scott, P.A., Hansell, R.I.C., Fayle, D.C.F., and Staniforth, R.J. 1993b. Responses of white spruce to tundra environments: Development of tree islands (unpublished manuscript).Google Scholar
  67. Sirois, L. 1992. The transition between boreal forest and tundra. In: Shugart, H.H., Leemans, R., and Bonan, G.B. (eds.), Systems Analysis of the Global Boreal Forest(pp. 196 – 215 ). Cambridge: Cambridge Press.CrossRefGoogle Scholar
  68. Sirois, L., and Payette, S. 1991. Reduced postfire tree regeneration along a boreal forest—forest-tundra transect in northern Quebec. Ecology72: 619 – 627.CrossRefGoogle Scholar
  69. Skre, O. 1991. Physiology of plant survival under cold conditions, with particular reference to dark respiration as a factor limiting growth at timberline. A literature review. Medd. Norsk Inst. Skogforskning44: 1 – 34.Google Scholar
  70. Staniforth, R.J., Scott, P.A., and Hansell, R.I.C. 1993. Responses of white spruce to tundra environments: Seed production (unpublished manuscript).Google Scholar
  71. Stevens, G.C., and Fox, J.F. 1991. The causes of treeline. Annu. Rev. Ecol. System.22: 177 – 191.CrossRefGoogle Scholar
  72. Sveinbjörnsson, B. 1992. Arctic tree line in a changing climate. In: Chapin, F.S., III, Jefferies, R.L., Reynolds, J.F., Shaver, G.R., Svoboda, J. (eds.), Arctic Ecosystems in a Changing Climate(pp. 239 – 258 ). San Diego: Academic Press.Google Scholar
  73. Sveinbjörnsson, B., Nordell, O., and Kauhanen, H. 1992. Nutrient relations of mountain birch growth at and below the elevational tree-line in Swedish Lapland. Funct. Ecol.6: 213 – 220.CrossRefGoogle Scholar
  74. Sveinbjörnsson, B., Sonesson, M., Nordell, O.K., and Karlsson, S.P. 1993. Performance of mountain birch growth in different environments in Sweden and Iceland: Implications for afforestation. In: Alden, J.N., Mastrantonio, L., and Odum, S. (eds.), Forest Development in Cold Climates(pp. 79 – 88 ). New York: Plenum Press.Google Scholar
  75. Timoney, K.P., and Wein, R.W. 1991. The aerial pattern of burned tree vegetation in the subarctic region of northwestern Canada. Arctic44: 223 – 230.Google Scholar
  76. Tranquillini, W. 1979. Physiological Ecology of Alpine Timberline. Berlin: Springer- Verlag.Google Scholar
  77. Van Cleve, K., and Yarie, J. 1986. Interaction of temperature, moisture, and soil chemistry in controlling nutrient cycling and ecosystem development in the taiga of Alaska. In: Van Cleve, K., Chapin, F.S., III, Flanagan, P.W., Viereck, L.A., and Dyrness, C.T. (eds.), Forest Ecosystems in the Alaska Taiga(pp. 160 – 189 ). New York: Springer-Verlag.Google Scholar
  78. Van Cleve, K., Barney, R., and Schlentner, R. 1981. Evidence of temperature control of production and nutrient cycling in two interior Alaska black spruce ecosystems. Can. J. Forest Res.11: 258 – 273.CrossRefGoogle Scholar
  79. Van Cleve, K., Oechel, W.C., and Horn, J.L. 1990. Response of black spruce (Picea mariana)ecosystems to soil temperature modification in interior Alaska. Can. J. Forest Res.20: 1530 – 1535.CrossRefGoogle Scholar
  80. Viereck, L.A. 1979. Characteristics of treeline plant communities in Alaska. Holarc- tic Ecol. 2: 228 – 238.Google Scholar
  81. Vowinckel, T. 1975. The effect of climate on the photosynthesis of Picea marianain the subarctic tree line. Ph.D. dissertation, McGill University.Google Scholar
  82. Wein, R.W. 1976. Frequency and characteristics of arctic tundra fires. Arctic 29:213– 222.Google Scholar
  83. Werren, G.L. 1979. Winter stress in subarctic spruce associations: A Schefferville case study. M.Sc. thesis, McGill University.Google Scholar
  84. Zasada, J.C. 1986. Natural regeneration of trees and tall shrubs on forest sites in interior Alaska. In: Van Cleve, K., Chapin, F.S., III, Flanagan, P.W., Viereck, L.A., and Dyrness, C.T. (eds.), Forest Ecosystems in the Alaska Taiga(pp. 44– 73 ). New York: Springer-Verlag.Google Scholar
  85. Zasada, J.C., Sharik, T.L., and Nygren, M. 1991. The reproductive process in boreal forest trees. In: Shugart, H.H., Leemans, R., and Bonan, G.B. (eds.), Systems Analysis of the Global Boreal Forest(pp. 85 – 185 ). Cambridge: Cambridge University Press.Google Scholar
  86. Zasada, J.C., Foote, M.J., Deneke, F.J., and Parkerson, R.H. 1978. Case history of an excellent white spruce cone crop and seed crop in interior Alaska: Cone and seed production, germination, and seedling survival. USD A Forest Service General Technical Report PNW-65.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1997

Authors and Affiliations

  • Peter A. Scott
  • Claude Lavoie
  • Glen M. MacDonald
  • Bjartmar Sveinbjörnsson
  • Ross W. Wein

There are no affiliations available

Personalised recommendations