Skip to main content

Growth of Cesàro means of double Vilenkin-Fourier series of unbounded type

  • Chapter
Analysis of Divergence

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

  • 498 Accesses

Abstract

Let N represent the set of natural numbers, and Q := [0, 1) x [0, 1) represent the unit cube. Let p 0, p 1, p 2, … and q 0, q 1,q 2, … be two sequences of natural numbers with p n≥ 2 and q n≥ 2. For each n ∈ N set P n := p 0 p 1p n-1 and Q n := q 0 q 1q n-1, where the empty product is by definition 1. The double Vilenkin system associated with these generators is the system (w n,m ;n,mN) defined on Q as follows:

$${{w}_{{n,m}}}(x,y): = {{w}_{n}}(x){{w}_{m}}(y): = \prod\limits_{{k = 0}}^{\infty } {\exp } \left( {\frac{{2\pi i{{n}_{k}}{{x}_{k}}}}{{{{p}_{k}}}}} \right)\prod\limits_{{k = 0}}^{\infty } {\exp } \left( {\frac{{2\pi i{{m}_{k}}{{y}_{k}}}}{{{{q}_{k}}}}} \right) $$

, where the coefficients n k , m k , x k , y k all are integers which satisfy

$$0 \leqslant {{n}_{k}} \leqslant {{p}_{k}}, 0 \leqslant {{m}_{k}} < {{q}_{k}}, 0 \leqslant {{x}_{k}} < {{p}_{k}},0 \leqslant {{y}_{k}} < {{q}_{k}}, $$

(see Vilenkin [5] for more details). When p k q k ≡2 for all k, the system w n,m is the double Walsh system. When p k = O(1) and q k =O(1), the system w n,m is called a double Vilenkin system of bounded type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Móricz, F. Schipp, and W.R. Wade, Cesàro summability of double Walsh-Fourier series, Trans. Amer. Math. Soc. 329(1992), 131–140.

    Article  MathSciNet  MATH  Google Scholar 

  2. C.W. Onneweer, Differentiability of Rademacher series on groups, Acta Sci. Math. Szeged 39(1977), 121–128.

    MathSciNet  MATH  Google Scholar 

  3. J. Pál and P. Simon, On a generalization of the concept of derivative, Acta Math. Acad. Sci. Hungar. 29(1977), 155–164.

    Article  MathSciNet  MATH  Google Scholar 

  4. N.I. Tsutserova, On (C, 1)-summability of Fourier series in a multiplicative system of functions, Mat. Zametki 43(1988), 808–848.

    MathSciNet  MATH  Google Scholar 

  5. N. Ya. Vilenkin, On a class of complete orthonormal systems, Izv. Akad. Nauk. SSSR, Ser. Mat. 11(1947), 363–400.

    MathSciNet  MATH  Google Scholar 

  6. F. Weisz, Hardy spaces and Cesàro means of two-dimensional Fourier series, Bolyai Soc. Math. Studies 5(1996), 353–367.

    MathSciNet  Google Scholar 

  7. F. Weisz, Cesàro summability of two-dimensional Walsh-Fourier series, Trans. Amer. Math. Soc. 348(1996), 2169–2181.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Birkhäuser Boston

About this chapter

Cite this chapter

Wade, W.R. (1999). Growth of Cesàro means of double Vilenkin-Fourier series of unbounded type. In: Bray, W.O., Stanojević, Č.V. (eds) Analysis of Divergence. Applied and Numerical Harmonic Analysis. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-2236-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2236-1_4

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-7467-4

  • Online ISBN: 978-1-4612-2236-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics