Some Lp(L)– and L2(L2)– estimates for oscillatory Fourier transforms

  • Björn G. Walther
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)


Let \(\begin{gathered} 0 \leqslant {{n}_{k}} \leqslant {{p}_{k}}, 0 \leqslant {{m}_{k}} < {{q}_{k}}, 0 \leqslant {{x}_{k}} < {{p}_{k}},0 \leqslant {{y}_{k}} < {{q}_{k}}, \hfill \\ \left( {{{S}^{a}}f} \right){{\left( t \right)}^{ \wedge }} = {\text{exp}}\left( {it{{{\left| \xi \right|}}^{a}}} \right)\hat{f}\left( \xi \right) \hfill \\ \end{gathered} \). We discuss some examples of maximal estimates and weighted L2-estimates for Sf. The techniques used include asymptotics for Bessel functions and the complete orthogonal decomposition of L2(ℝ n ) using spherical harmonics.


Spherical Harmonic Maximal Function Pointwise Convergence Schrodinger Equation Maximal Estimate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Ben-Artzi, S. Devinatz, Local smoothing and convergence properties of Schrödinger type equation, J. Funct. Anal. 101 (1991), pp. 231–254, MR 92k: 35064.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    M. Ben-Artzi, S. Klainerman, Decay and Regularity for the Schrödinger Equation, J. Anal. Math. 58 (1992), pp. 25–37, MR 94e: 35053.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    J. Bergh; J. Löfström, Interpolation Spaces. An Introduction, Grundlehren der Mathematischen Wissenschaften, No. 223. Springer- Verlag, Berlin-New York, 1976, MR 58 #2349.Google Scholar
  4. [4]
    J. Bonrgain, A remark on Schrödinger operators, Israel J. Math. 77 (1992), pp. 1–16, MR 93k: 35J101.MathSciNetCrossRefGoogle Scholar
  5. [5]
    L. Carleson, Some Analytic problems to related to Statistical Mechanics, Euclidean harmonic analysis (Proc. Sem., Univ. Maryland, College Park, Md., 1979), pp. 5–45, Lecture Notes in Math. 779, Springer, Berlin, 1980, MR 82j: 8 2005.CrossRefGoogle Scholar
  6. [6]
    M. Cowling, Pointwise behavior of solutions to Schrödinger equations, Harmonic analysis (Cortona, 1982), pp. 83–90, Lecture Notes in Math. 992, Springer, Berlin-New York, 1983, MR 85c: 34029.Google Scholar
  7. [7]
    M. Cowling, G. Mauceri Inequalities for some maximal functions. I, Trans. Amer. Math. Soc. 287 (1985), pp. 431–455, MR 86a:42023.MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    W. Craig, T. Kappeler, W. Strauss, Microlocal dispersive smoothing for the Schrödinger equation, Comm. Pure Appl. Math. 48 (1995), 769–860, MR 96m: 35057.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    K. Guo, A uniform I P estimate of Bessel functions and distributions supported on Sn-1, Proc. Amer. Math. Soc. 125 (1997), pp. 1329–1340, MR 97g: 46047.MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    H. P. Heinig, Sichun Wang, Maximal Function Estimates of Solutions to General Dispersive Partial Differential Equations, Preprint, Depart- ment of Mathematics and Statistics, McMaster University, Hamilton, Ontario, L8S 4K1 Canada.Google Scholar
  11. [11]
    H. P. Heinig, Sichun Wang, Maximal Function Estimates of Solutions to General Dispersive Partial Differential Equations, Trans. Amer. Math. Soc. (to appear), CMP 1 458 324.Google Scholar
  12. [12]
    L. Hörmander, The Analysis of Linear Partial Differential Operators I. Distribution theory and Fourier analysis. Second edition, Springer Study Edition, Springer-Verlag, Berlin, 1990, MR 91m: 35001b, 85g: 35002a.MATHGoogle Scholar
  13. [13]
    T. Kato, K. Yajima, Some Examples of Smooth Operators and the associated Smoothing Effect, Rev. Math. Phys. 1 (1989), pp. 481–496, MR 91i: 47013.MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    C. E. Kenig, G. Ponce, L. Vega, Oscillatory Integrals and Regularity of Dispersive Equations, Indiana Univ. Math. J. 40 (1991), pp. 33–69, MR 92d: 35081.MathSciNetMATHCrossRefGoogle Scholar
  15. [15]
    L. Kolasa, Oscillatory integrals and Schrödinger maximal operators, Pacific J. Math. 177 (1997), pp. 77–101, MR 98h: 35043.MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    A. Moyua; A. Vargas; L. Vega, Schrödinger maximal function and restriction properties of the Fourier transform, Internat. Math. Res. Notices 1996, pp. 793–815, MR 97k: 42042.Google Scholar
  17. [17]
    E. Prestini, Radial functions and regularity of solutions to the Schrodinger equation, Monatsh. Math. 109 (1990), pp. 135–143, MR 91j: 35035.MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    J. L. Rubio de Francia, Maximal functions and Fourier transforms, Duke Math. J. 53 (1986), pp. 395–404, MR 87j: 42046.MathSciNetMATHCrossRefGoogle Scholar
  19. [19]
    P. Sjölin, Regularity of Solutions to the Schrödinger Equation, Duke Math. J. 55 (1987), pp. 699–715, MR 88j: 35026.MathSciNetMATHCrossRefGoogle Scholar
  20. [20]
    C. Sogge, E. M. Stein, Averages of functions over hypersurfaces in R n, Invent. Math. 82 (1985), 543–556, MR 87d: 42030.MathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    A. Soljanik, Letter communication, April 1990.Google Scholar
  22. [22]
    E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, NJ, 1970, MR 44 #7280.MATHGoogle Scholar
  23. [23]
    E. M. Stein, Maximal functions. I. Spherical means, Proc. Nat. Acad. Sci. U.S.A. 73 (1976), pp. 2174–2175, MR 54 #8133a.MathSciNetMATHCrossRefGoogle Scholar
  24. [24]
    E. M. Stein, Harmonic Analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, No. 43, Monographs in Harmonic Analysis, III, Princeton University Press, Princeton, NJ, 1993, MR 95c: 42002.MATHGoogle Scholar
  25. [25]
    E. M. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, NJ, 1971, MR 46 #4102.MATHGoogle Scholar
  26. [26]
    R. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), pp. 705–714, MR 57 #23577.MathSciNetMATHCrossRefGoogle Scholar
  27. [27]
    L. Vega, Schrödinger Equations: Pointwise Convergence to the Initial Data, Proc. Amer. Math. Soc. 102 (1988), pp. 874–878, MR 89d1: 35046.MathSciNetMATHGoogle Scholar
  28. [28]
    L. Vega, El multiplicador de Schrödinger, la funcion maximal y los operadores de restrictiön, Tesis doctoral dirigida por Antonio Córdoba Barba, Departamento de Matemáticas, Universidad Autónoma de Madrid, Febrero 1.988.Google Scholar
  29. [29]
    B. G. Walther, Maximal Estimates for Oscillatory Integrals with Concave Phase, Contemp. Math. 189 (1995), pp. 485–495, MR 96e: 42024.MathSciNetGoogle Scholar
  30. [30]
    Sichun Wang, On the Maximal Operator associated with the Free Schrödinger Equation, Studia Math. 122 (1997), 167–182, CMP 1 432 167.MathSciNetMATHGoogle Scholar
  31. [31]
    Si Lei Wang, On the Weighted Estimate of the Solution associated with the Schrödinger equation, Proc. Amer. Math. Soc. 113 (1991), 87–92, MR 91k: 35066.MathSciNetMATHGoogle Scholar

Copyright information

© Birkhäuser Boston 1999

Authors and Affiliations

  • Björn G. Walther

There are no affiliations available

Personalised recommendations