Skip to main content

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

  • 502 Accesses

Abstract

Divergent processes are the raison d’étre of most of classical and modern analysis. Divergent processes, or rather control and management of such, occur whenever a limit procedure, or combination of, is present. Perhaps the most graphic and at the same time subtle example of this lies in the notion of integration. It is well known that for the Riemann integral of a bounded function on [a, b] to exist, it is necessary as sufficient that the function be continuous almost everywhere. Loosely put, the Riemann integral is basically appropriate for the class of continuous functions on [a, b], C[a, b]. Furthermore, the natural notion of convergence for C[a, b] is that of uniform convergence. The latter fact indicates a convergence theorem: one may interchange a sequential limit operation and the Riemann integral, if the limit operation is uniform. Lebesgue’s idea, introducing the notion of measurable functions, not only led to a broader class of functions which can be integrated while keeping all operational properties of the Riemann integral, but also led to much richer sequential limit theorems. Other examples of substantial importance are as follows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Benke, Generalized Rudin-Shapiro systems, J. of Fourier Anal, and Appl. 1 (1994), 87–101.

    Article  MathSciNet  MATH  Google Scholar 

  2. W. O. Bray, Caslav V. Stanojević, Tauberian L 1 -convergence classes of Fourier series II, Math. Ann. 269 (1984) p469–486.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. P. Calderón and A. Zygmund, On the existence of certain singular integrals, Acta Math. 88 (1952) p. 85–139.

    Article  MathSciNet  MATH  Google Scholar 

  4. L. Carleson, Some Analytic problems to related to Statistical Mechanics, Euclidean harmonic analysis (Proc. Sem., Univ. Maryland, College Park, Md., 1979), Lecture Notes in Math. 779, Springer, Berlin, 1980 pp. 5–45.

    Chapter  Google Scholar 

  5. R. E. Edwards, Littlewood-Paley Theory and Multipliers, Ergebnisse der Mathematik und ihrer Grenzgebiete Vol 90, Springer Verlag (1977).

    Google Scholar 

  6. G. H. Hardy, Divergent Series, Oxford Claredon Press (1949).

    MATH  Google Scholar 

  7. A. J. Jerri, The Gibb’s Phenomena in Fourier Analysis, Splines and Wavelet Approximation, Kluwer Academic Publishers, Boston (1998).

    Google Scholar 

  8. Y. Katznelson, An Introduction to Harmonic Analysis, Dover Publ. (1976).

    MATH  Google Scholar 

  9. G. Muckenhoupt, Hardy’s inequality with weights, Studia Math. 44 1972, 31–38.

    MathSciNet  MATH  Google Scholar 

  10. S. M. Nikol’skii, La série de Fourier d’une fonction dont be module de continuité est donné, Dokl. Akad. Nauk SSSR 52 (1946), p.p. 191–194.

    Google Scholar 

  11. M. A. Pinsky, Pointwise Fourier inversion and related eigenfunction expansions, Communications in Pure and Applied Mathematics, 47(1994), 653–681.

    Article  MathSciNet  MATH  Google Scholar 

  12. B. Rubin, Inversion of Radon transforms using wavelet transforms generated by wavelet measures, Math. Scand. (to appear).

    Google Scholar 

  13. Caslav V. Stanojević, Tauberian conditions for the L 1 -convergence of Fourier semes, Trans. Amer. Math. Soc. 271 (1982) p237–244.

    MathSciNet  MATH  Google Scholar 

  14. E. M. Stein, Harmonic Analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, No. 43, Monographs in Harmonic Analysis, III, Princeton University Press, Princeton, NJ, 1993.

    Google Scholar 

  15. R. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), pp. 705–714.

    Article  MathSciNet  MATH  Google Scholar 

  16. Vladimirov V. S., Droshshinov Yu. N., Zavyalov B. I., Tauberian Theorems for Generalized Functions, Kluwer Academic Publishers, Boston, 1988.

    MATH  Google Scholar 

  17. A. Zygmund, Trigonometric Series, Cambridge University Press, 2 nd edition (1959).

    MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Birkhäuser Boston

About this chapter

Cite this chapter

Bray, W.O., Stanojević, Č.V. (1999). Overview. In: Bray, W.O., Stanojević, Č.V. (eds) Analysis of Divergence. Applied and Numerical Harmonic Analysis. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-2236-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2236-1_1

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-7467-4

  • Online ISBN: 978-1-4612-2236-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics