Skip to main content

Ultra-High Reynolds Number Flows Using Cryogenic Helium: An Overview

  • Chapter

Abstract

The purpose of this workshop has been to examine the possibility that liquid or gaseous helium could be of significant value in generating the highest possible Reynolds and Rayleigh number flows. This volume is the second devoted to this subject, and therefore in principle it is unnecessary to repeat details which have already been covered in the book “High Reynolds Number flows Using Liquid and Gaseous Helium” [1]. Nevertheless, in the interest of keeping this volume reasonably self-contained, a certain amount of repetition is probably worth while.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. R. J. Donnelly, High Reynolds Number Flows Using Liquid and Gaseous Helium (Springer-Verlag; New York, 1991).

    Google Scholar 

  2. G. Ahlers and J. E. Graebner, Time Dependence in Convective Heat Transport Between Horizontal Parallel Plates, Bull. Am. Phys. Soc. 17, 61 (1972).

    Google Scholar 

  3. G. Ahlers, Convective Heat Transport Between Horizontal Parallel Plates, Bull. Am. Phys. Soc. 17, 59–60 (1972).

    Google Scholar 

  4. G. Ahlers, Low Temperature Studies of the Rayleigh-Benard Instability and Turbulence, Phys. Rev. Lett. 33, 1185 (1974).

    Article  ADS  Google Scholar 

  5. J. J. Niemela and R. J. Donnelly, Thermal Convection in Liquid Helium, in High Reynolds Number Flows Using Liquid and Gaseous Helium, R.J. Donnelly, Editor. Springer-Verlag: New York, 243–252 (1991).

    Google Scholar 

  6. D. C. Threlfall, Free Convection in Low-Temperature Gaseous Helium, J. Fluid Mech. 67, 17–28 (1975).

    Article  ADS  Google Scholar 

  7. X. Z. Wu, Along the road to developed turbulence: Free thermal convection in low temperature helium gas, PhD Thesis, (University of Chicago, 1991).

    Google Scholar 

  8. R. J. Donnelly, Cryogenic Helium Gas Convection Research, Report of the Dept. of Physics, University of Oregon, (1994).

    Google Scholar 

  9. H. Schlichting, Boundary-Layer Theory (McGraw-Hill; 1979).

    MATH  Google Scholar 

  10. C. F. Barenghi, C. J. Swanson, and R. J. Donnelly, Emerging Issues in Helium Turbulence, J. Low Temp. Phys. 100, 1–29, (1995).

    Article  Google Scholar 

  11. M. V. Zagarola, Mean-Flow Scaling of Turbulent Pipe Flow, Ph.D. Thesis, (Princeton University, 1996).

    Google Scholar 

  12. R. J. Donnelly, Small Induction Motor and Bearings for Operation in Liquid Helium, Rev. Sci. Inst. 28, 351–353 (1957).

    Article  ADS  Google Scholar 

  13. F. S. Porter, S. R. Bandler, C. Enss, R. E. Lanou, H. J. Maris, T. More, and G. M. Seidel, A Stepper Motor for Use at Temperatures Down to 20mK, Physica B, ed. R.J. Donnelly, 151–152 (The 20th International Conference On Low Temperature Physics, Eugene, OR, 1994).

    Google Scholar 

  14. M. M. Couette, Etudes sur le Frottement des Liquides, Ann. Chim. Phys. Series VI 21, 433 (1890).

    Google Scholar 

  15. D. P. Lathrop, J. Fineberg, and H. L. Swinney, Transition to Shear-Driven Turbulence in Couette-Taylor Flow, Phys. Rev. A 46, 6390 (1992).

    Article  ADS  Google Scholar 

  16. Y. B. You, Remnant Vortices of Helium II Between Rotating Concentric Cylinders, Ph.D. Thesis, (University of Oregon, 1993).

    Google Scholar 

  17. S. W. VanSciver, D. S. Holmes, X. Huang, and J. G. W. II, He II Flowmetering, Cryogenics 31, 75 (1991).

    Article  Google Scholar 

  18. B. Castaing, B. Chabaud, and B. H’ebral, Hot Wire Anemometer Operating at Cryogenic Temperatures, Rev. of Sci. Instr. 63, 4168 (1992).

    ADS  Google Scholar 

  19. M. R. Smith, Evolution and Propagation of Turbulence in Helium II, Ph. D. Thesis, (University of Oregon, Eugene, OR, 1992).

    Google Scholar 

  20. F. Bielert and G. Stamm, Visualization of Taylor-Couette flow in Superfluid Helium, Cryogenics 33, 938 (1993).

    Article  Google Scholar 

  21. F. Bielert and G. Stamm, Influence of Quantized Vortex Lines on the Stability of Taylor-Couette Flow in He II, Physica B 194, 561 (1994).

    Article  ADS  Google Scholar 

  22. R. J. Donnelly, Quantized Vortices in Helium II (Cambridge University Press; Cambridge, 1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Donnelly, R.J. (1998). Ultra-High Reynolds Number Flows Using Cryogenic Helium: An Overview. In: Donnelly, R.J., Sreenivasan, K.R. (eds) Flow at Ultra-High Reynolds and Rayleigh Numbers. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2230-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2230-9_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7464-3

  • Online ISBN: 978-1-4612-2230-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics