Trends and Open Problems in the Theory of Random Dynamical Systems

  • Ludwig Arnold
Part of the Lecture Notes in Statistics book series (LNS, volume 128)

Abstract

The area of random dynamical systems (henceforth abbreviated as ‘RDS’) can be superficially described as the ‘intersection’ of stochastic processes with dynamical systems. It is an example for the fact that a symbiosis of two mathematical disciplines at the right moment amounts to opening a scientific gold mine, both conceptually and as far as significant applications are concerned.

Keywords

Entropy Filtration Manifold Congo Alphen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. Arnold. Random dynamical systems. Springer, Berlin Heidelberg New York, 1997 (to appear).Google Scholar
  2. [2]
    L. Arnold. Anticipative problems in the theory of random dynamical systems. In M. C. Cranston and M. A. Pinsky, editors, Stochastic Analysis (Proceedings of Symposia in Pure Mathematics, Volume 57), pages 529–541. American Mathematical Society, Providence, Rhode Island, 1995.Google Scholar
  3. [3]
    L. Arnold. Generation of random dynamical systems. In W. Kliemann and N. Sri Namachchivaya, editors, = Nonlinear Dynamics and Stochastic Mechanics, CRC Mathematical Modelling Series, pages 203–230, Boca Raton, Florida, USA, 1995. CRC Press.Google Scholar
  4. [4]
    L. Arnold. Six lectures on random dynamical systems. In R. Johnson, editor, Dynamical Systems (CIME Summer School 1994), volume 1609 of Lecture Notes in Mathematics, pages 1–43. Springer, Berlin Heidelberg New York, 1995.Google Scholar
  5. [5]
    L. Arnold and P. Imkeller. Furstenberg-Khasminskii formulas for Lyapunov exponents via anticipative calculus. Stochastics and Stochastics Reports, 54: 127–168, 1995.MathSciNetMATHGoogle Scholar
  6. [6]
    L. Arnold and P. Imkeller. Stratonovich calculus with spatial parameters and anticipative problems in multiplicative ergodic theory. Stochastic Processes and their Applications, 62: 19–54, 1996.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    L. Arnold and P. Kloeden. Discretization of a random dynamical system near a hyperbolic point. Mathematische Nachrichten, 181: 43–72, 1996.MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    L. Arnold and Nguyen Dinh Cong. On the simplicity of the Lyaponov spectrum of products of random matrices. Ergodic Theory and Dynamical Systems, 17: 1–21, 1997.MathSciNetCrossRefGoogle Scholar
  9. [9]
    L. Arnold and M. Scheutzow. Perfect cocycles through stochastic differential equations. Probab. Theory Relat. Fields, 101: 65–88, 1995.MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    L. Arnold and B. Schmalfuß. Fixed points and attractors for random dynamical systems. In A. Naess and S. Krenk, editors, IUTAM Symposium on Advances in Nonlinear Stochastic Mechanics, pages 19–28. Kluwer, Dordrecht, 1996.Google Scholar
  11. [11]
    L. Arnold and Xu Kedai. Normal forms for random diffeomorphisms. J. Dynamics and Differential Equations, 4: 445–483, 1992.MATHCrossRefGoogle Scholar
  12. [12]
    L. Arnold and Xu Kedai. Simultaneous normal form and center manifold reduction for random differential equations. In C. Perelló, C. Simó, and J. Solá-Morales, editors, EQUADIFF-91, volume 1, pages 68–80. World Scientific, Singapore, 1993.Google Scholar
  13. [13]
    L. Arnold and Xu Kedai. Normal forms for random differential equations. Journal of Differential Equations, 116: 484–503, 1995.MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    J. Bahnmüller and Liu Pei-Dong. Characterization of measures satisfying Pesin’s entropy formula for random dynamical systems. Submitted, 1995.Google Scholar
  15. [15]
    P. Baxendale. Brownian motion in the diffeomorphism group I. Compositio Mathematica, 53: 19–50, 1984.MathSciNetMATHGoogle Scholar
  16. [16]
    T. Bogenschütz. Entropy, pressure, and a variational principle for random dynamical systems. Random & Computational Dynamics, 1: 99–116, 1992.MathSciNetGoogle Scholar
  17. [17]
    P. Bougerol and J. Lacroix. Products of random matrices with applications to Schrödinger operators. Birkhäuser, Boston Basel Stuttgart, 1985.MATHGoogle Scholar
  18. [18]
    P. Boxler. A stochastic version of center manifold theory. Probab. Th. Rel Fields, 83: 509–545, 1989.MathSciNetMATHCrossRefGoogle Scholar
  19. [19]
    R. Carmona and J. Lacroix. Spectral theory of random Schrödinger operators. Birkhäuser, Boston Basel Stuttgart, 1990.MATHGoogle Scholar
  20. [20]
    A. Carverhill. Flows of stochastic dynamical systems: ergodic theory. Stochastics, 14: 273–317, 1985.MathSciNetMATHGoogle Scholar
  21. [21]
    H. Crauel. Global random attractors are uniquely determined by attracting deterministic compact sets. Submitted, 1995.Google Scholar
  22. [22]
    H. Crauel and F. Flandoli. Attractors for random dynamical systems. Probab. Theory Relat Fields, 100: 365–393, 1994.MathSciNetMATHCrossRefGoogle Scholar
  23. [23]
    S. Dahlke. Invariant manifolds for products of random diffeomorphisms. J. Dynamics and Differential Equations, 1996.Google Scholar
  24. [24]
    K. D. Elworthy. Stochastic differential equations on manifolds. Cambridge University Press, Cambridge, 1982.MATHGoogle Scholar
  25. [25]
    A. Grorud and D. Talay. Approximation of Lyapunov exponents of nonlinear stochastic differential systems. SIAM J. Appl. Math., 1996.Google Scholar
  26. [26]
    V. M. Gundlach. Random homoclinic orbits. Random & Computational Dynamics, 3: 1–33, 1995.MathSciNetMATHGoogle Scholar
  27. [27]
    R. Z. Khasminskii. Stochastic stability of differential equations. Sijthoff and Noordhoff, Alphen, 1980. (Translation of the Russian edition, Nauka, Moscow 1969).Google Scholar
  28. [28]
    Y. Kifer. Ergodic theory of random transformations. Birkhäuser, Boston Basel Stuttgart, 1986.MATHGoogle Scholar
  29. [29]
    H. Kunita. Stochastic flows and stochastic differential equations. Cambridge University Press, Cambridge, 1990.MATHGoogle Scholar
  30. [30]
    F. Ledrappier and L.-S. Young. Entropy formula for random transformations. Probab. Theory Relat. Fields, 80: 217–240, 1988.MathSciNetMATHCrossRefGoogle Scholar
  31. [31]
    P.-D. Liu and M. Qian. Smooth ergodic theory of random dynamical systems, volume 1606 of Lecture Notes in Mathematics. Springer, Berlin Heidelberg New York, 1995.Google Scholar
  32. [32]
    K. Mischaikow. Conley index theory. In R. Johnson, editor, Dynamical Systems (CIME Summer School 1994), volume 1609 of Lecture Notes in Mathematics, pages 119–207. Springer, Berlin Heidelberg New York, 1995.Google Scholar
  33. [33]
    Nguyen Dinh Cong. Topological dynamics of random dynamical systems. Oxford University Press, 1997.MATHGoogle Scholar
  34. [34]
    Nguyen Dinh Cong. Structural stability of linear random dynamical systems. Report 312, Institut für Dynamische Systeme, Universität Bremen, June 1994.Google Scholar
  35. [35]
    Nguyen Dinh Cong. Topological classification of linear hyperbolic cocycles. Report 305, Institut für Dynamische Systeme, Universität Bremen, May 1994.Google Scholar
  36. [36]
    G. Ochs and V. Oseledets. On recurrent cocycles and the non-existence of random fixed points. Report 382, Institut für Dynamische Systeme, Universität Bremen, 1996.Google Scholar
  37. [37]
    V. I. Oseledets. A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems. Trans. Moscow Math. Soc., 19: 197–231, 1968.MATHGoogle Scholar
  38. [38]
    V. I. Oseledets. Classification of Gl(2,R)-valued cocycles of dynamical systems. Report 360, Institut für Dynamische Systeme, Universität Bremen, 1995.Google Scholar
  39. [39]
    A. Quas. On representations of Markov chains by random smooth maps. Bull. London Math. Soc., 23: 487–492, 1991.MathSciNetMATHCrossRefGoogle Scholar
  40. [40]
    D. Ruelle. Ergodic theory of differentiate dynamical systems. Publ. Math., Inst. Hautes Etud. Sci., 50: 275–306, 1979.CrossRefGoogle Scholar
  41. [41]
    B. Schmalfuß. Measure attractors and stochastic attractors. Report 332, Institut für Dynamische Systeme, Universität Bremen, 1995.Google Scholar
  42. [42]
    B. Schmalfuß. A random fixed point theorem based on Lyapunov exponents. Report 349, Institut für Dynamische Systeme, Universität Bremen, 1995.Google Scholar
  43. [43]
    B. Schmalfufi. The random attractor of the stochastic Lorenz system. Report 367, Institut für Dynamische Systeme, Universität Bremen, 1996.Google Scholar
  44. [44]
    D. Talay. Approximation of upper Lyapunov exponents of bilinear stochastic differential equations. SIAM J. Numer. Anal., 28: 1141–1164, 1991.MathSciNetMATHCrossRefGoogle Scholar
  45. [45]
    T. Wanner. Linearization of random dynamical systems. In C. Jones, U. Kirchgraber, and H. O. Walther, editors, Dynamics Reported, volume 4, pages 203–269. Springer, Berlin Heidelberg New York, 1995.Google Scholar
  46. [46]
    V. Wihstutz. Numerics for Lyapunov exponents of degenerate linear stochastic systems. In W. Kliemann and N. Sri Namachchivaya, editors, = Nonlinear Dynamics and Stochastic Mechanics, CRC Mathematical Modelling Series, Boca Raton, Florida, USA, 1995. CRC Press.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1998

Authors and Affiliations

  • Ludwig Arnold
    • 1
  1. 1.Institut für Dynamische SystemeUniversität BremenBremenGermany

Personalised recommendations