Skip to main content

Foundation of Entropy, Complexity and Fractals in Quantum Systems

  • Chapter
Probability Towards 2000

Part of the book series: Lecture Notes in Statistics ((LNS,volume 128))

Abstract

Fundamentals of quantum entropy are totally reviewed from von Neumann to recent works including new formulation of Kolmogorov-Sinai type dynamical entropy. Entropy is one of the most important quantities to describe a chaotic aspect of several different phenomena. There exist many trials to express the complexity of a dynamical system. I proposed Information Dynamics to synthesize the dynamics of state change and the complexity of system in 1991. In this paper, it is shown that the complexity of entropy type becomes a useful tool in the following two points: It generalizes the usual formulation of dynamical entropy so that it can be applied to concrete quantum processes like optical communication. New concept of fractal dimension, so-called the fractal dimension of a state, can be introduced by this entropic complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. L. Accardi, Noncommutative Markov chains, International School of Mathematical Physics, Camerino, pp. 268–295, 1974.

    Google Scholar 

  2. L. Accardi, M. Ohya and H. Suyari, Computation of mutual entropy in quantum Markov chains, Open Sys. Information Dyn., 2, pp 337–354, 1994.

    Article  MATH  Google Scholar 

  3. L. Accardi and M. Ohya, Compound channels, transition expectations and liftings, to appear in J. Multivariate Analysis.

    Google Scholar 

  4. L. Accardi, M. Ohya and N. Watanabe, Dynamical entropy through quantum Markov chain, to appear in Open System and Information Dynamics.

    Google Scholar 

  5. S. Akashi, Superposition representability problems of quantum information channels, to appear in Open Systems and Information Dynamics.

    Google Scholar 

  6. H. Araki, Relative entropy of states of von Neumann algebras, Publ. RIMS, Kyoto Univ., 11, pp. 809–833, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  7. H. Araki, Relative entropy for states of von Neumann algebras II, Publ. RIMS, Kyoto Univ., 13, pp. 173–192, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  8. F. Benatti, Deterministic Chaos in Infinite Quantum Systems, Trieste Notes in Physics, Springer-Verlag, 1993.

    Google Scholar 

  9. P. Billingsley, Ergodic Theory and Information, Wiley, New York, 1965.

    MATH  Google Scholar 

  10. O. Bratteli and D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics I, Springer, New York, Berlin, Heidelberg, 1979.

    Google Scholar 

  11. O. Bratteli and D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics II, Springer, New York, Berlin, Heidelberg, 1981.

    MATH  Google Scholar 

  12. G. Choquet, Lecture Analysis I, II, III, Bengamin, New York, 1969.

    Google Scholar 

  13. A. Connes, H. Narnhofer and W. Thirring, Dynamical entropy of C*-algebras and von Neumann algebras, Commun. Math. Phys., 112, pp. 691–719, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Connes and E. St0rmer, Entropy for automorphisms of Hi von Neumann algebras, Acta Math., 134, pp. 289–306, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  15. M.J. Donald, On the relative entropy, Commun. Math. Phys., 105, pp. 13–34, 1985.

    MathSciNet  Google Scholar 

  16. G.G. Emch, Positivity of the K-entropy on non-abelian K -flows, Z. Wahrschein- lichkeitstheorie verw. Gebiete, 29, pp. 241–252, 1974.

    Article  MathSciNet  MATH  Google Scholar 

  17. K.H.Fichtner, W.Freudenberg and V.Liebscher, Beam splitting and time evolutions of Boson systems, preprint.

    Google Scholar 

  18. F. Hiai, M. Ohya and M. Tsukada, Sufficiency, KMS condition and relative entropy in von Neumann algebras, Pacific J. Math., 96, pp. 99–109, 1981.

    MathSciNet  MATH  Google Scholar 

  19. F. Hiai, M. Ohya and M. Tsukada, Sufficiency and relative entropy in *-algebras with applications to quantum systems, Pacific J. Math., 107, pp. 117–140, 1983.

    MathSciNet  MATH  Google Scholar 

  20. R. S. Ingarden, A. Kossakowski and M. Ohya, Information Dynamics and Open Systems, Kluwer, 1997.

    Google Scholar 

  21. K. Inoue, T. Matsuoka and M. Ohya, New approach to e-entropy and its comparison with Kolmogolov’s ? -entropy, SUT preprint.

    Google Scholar 

  22. A. N. Kolmogorov, Theory of transmission of information, Amer. Math. Soc. Translation, Ser.2, 33, pp. 291–321, 1963.

    Google Scholar 

  23. S. Kullback and R. Leibler, On information and sufficiency, Ann. Math. Stat., 22, pp. 79–86, 1951.

    Article  MathSciNet  MATH  Google Scholar 

  24. G. Lindblad, Completely positive maps and entropy inequalities, Commun. Math. Phys., 40, pp. 147–151, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  25. B. B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freemann and company, San Francisco, 1982.

    Google Scholar 

  26. T. Matsuoka and M. Ohya, Fractal dimensions of states and its application to Ising model, Rep. Math. Phys., 36, pp. 365–379, 1995.

    MathSciNet  MATH  Google Scholar 

  27. T. Matsuoka and M. Ohya, Fractal dimension of states and its application to shape analysis problem, to appear

    Google Scholar 

  28. N. Muraki, M. Ohya and D. Petz, Note on entropy of general quantum systems, Open Systems and Information Dynamics, 1, No. 1, pp. 43–56, 1992.

    Article  Google Scholar 

  29. N. Muraki and M. Ohya, Entropy functionals of Kolmogorov-Sinai type and their limit theorems, Letters in Math. Phys., 36, pp. 327–335, 1996.

    MathSciNet  MATH  Google Scholar 

  30. J. von Neumann, Die Mathematischen Grundlagen der Quantenmechanik, Springer- Berlin, 1932.

    Google Scholar 

  31. M. Ohya, Quantum ergodic channels in operator algebras, J. Math. Anal. Appl., 84, pp. 318–327, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  32. M. Ohya, On compound state and mutual information in quantum information theory, IEEE Trans. Information Theory, 29, pp. 770–777, 1983.

    Article  MATH  Google Scholar 

  33. M. Ohya, Note on quantum probability, L. Nuovo Cimento, 38, pp. 402–406, 1983.

    Article  MathSciNet  Google Scholar 

  34. M. Ohya, Entropy transmission in C*-dynamical systems, J. Math. Anal. Appl., 100, pp. 222–235, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  35. M. Ohya, Some aspects of quantum information theory and their applications to irreversible processes, Rep. Math. Phys., 27, pp. 19–47, 1989.

    MathSciNet  MATH  Google Scholar 

  36. M. Ohya, Information dynamics and its application to optical communication processes, Lecture Notes in Physics, 378, Springer, pp. 81–92, 1991.

    MathSciNet  Google Scholar 

  37. M. Ohya, Fractal dimensions of states, Quantum Probability and Related Topics, 6, pp. 359–369, World Scientific, Singapore, 1991.

    MathSciNet  Google Scholar 

  38. M. Ohya, State change, complexity and fractal in quantum systems, Quantum Communications and Measurement, Plenum, pp. 309–320, 1995.

    Google Scholar 

  39. M. Ohya, Fundamentals of quantum mutual entropy and capacity, SUT preprint.

    Google Scholar 

  40. M. Ohya and D. Petz, Quantum Entropy and its Use, Springer-Verlag, 1993.

    Google Scholar 

  41. N. Ohya, and N. Watanabe, Note on irreversible dynamics and quantum information, to appear in the Alberto Frigerio conference proceedings.

    Google Scholar 

  42. D.Petz, Sufficient subalgebras and the relative entropy of states on a von Neumann algebra, Commun. Math. Phys., 105, pp l23–131, 1986.

    MathSciNet  Google Scholar 

  43. C.E. Shannon, Mathematical theory of communication, Bell System Tech. J., 27, pp. 379–423, 1948.

    MathSciNet  MATH  Google Scholar 

  44. A. Uhlmann, Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in interpolation theory, Commun. Math. Phys., 54, pp. 21–32, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  45. H. Umegaki, Conditional expectation in an operator algebra IV, (entropy and information), Kodai Math. Sem. Rep., 14, pp. 59–85, 1962.

    Article  MathSciNet  MATH  Google Scholar 

  46. A.Weh rl, General properties of entropy,50, pp 221–260, 1978.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Ohya, M. (1998). Foundation of Entropy, Complexity and Fractals in Quantum Systems. In: Accardi, L., Heyde, C.C. (eds) Probability Towards 2000. Lecture Notes in Statistics, vol 128. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2224-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2224-8_16

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98458-2

  • Online ISBN: 978-1-4612-2224-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics