Ecotoxicological Risk Assessment of Soil Fauna Recovery from Pesticide Application

  • N. M. van Straalen
  • J. P. van Rijn
Part of the Reviews of Environmental Contamination and Toxicology book series (RECT, volume 154)


Ecotoxicological risk assessment provides a measure for adverse ecological effects of chemicals as a function of their concentration in the environment. The risk is commonly expressed as the ratio between the predicted environmental concentration (PEC) and the predicted no-effect concentration (PNEC) (Norton et al. 1992; Van Leeuwen and Hermens 1995). Another approach is to use statistical distributions for PECs and PNECs and to derive maximum acceptable concentrations from the risk associated with the probability of PEC being greater than PNEC. This approach has gone under the name of “distribution-based extrapolation methodology” (Aldenberg and Slob 1993; Forbes and Forbes 1993; Kooijman 1987; Okkerman et al. 1993; Smith and Cairns 1993; Van Straalen and Denneman 1989; Wagner and Løkke 1991.)


Soil Fauna Carabid Beetle Environ Toxicol Cocoon Production Econ Entomol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abel C, Heimbach U (1992) Testing effects of pesticides on Poecilus cupreus (Coleoptera, Carabidea) in a standardised semi-field test. IOBC/WPRS Bull XV/3: 171–175.Google Scholar
  2. Achik J, Schiavon M, Houpert G (1989) Persistence and biological activity of four insecticides in two soil types under field and laboratory conditions. J Econ Entomol 82: 1572–1575.Google Scholar
  3. Aebischer NJ (1990) Assessing pesticide effects on non-target invertebrates using longterm monitoring and time-series modelling. Funct Ecol 4:369–373.Google Scholar
  4. Ahmad N, Walgenbach DD, Sutter GR (1979) Degradation rates of technical carbofuran and a granular formulation in four soils with known insecticide use history. Bull Environ Contam Toxicol 23:572–574.PubMedGoogle Scholar
  5. Al-Assiuty AIM, Khalil MA (1996) Effects of the herbicide atrazine on Entomobrya musatica (Collembola) in field and laboratory experiments. Appl Soil Ecol 4:139–146.Google Scholar
  6. Aldenberg T, Slob W (1993) Confidence limits for hazardous concentrations based on logistically distributed NOEC toxicity data. Ecotoxicol Environ Saf 25:48–63.PubMedGoogle Scholar
  7. Anton FAE, Laborda P, Ramos E (1993) Carbofuran acute toxicity to Eisenia foetida Savigny earthworms. Bull Environ Contam Toxicol 50: 407–412.PubMedGoogle Scholar
  8. Asteraki EJ, Hanks CB, Clements RO (1992) The impact of two insecticides on predatory ground beetles (Carabidae) in newly-sown grass. Ann Appl Biol 120:25–39.Google Scholar
  9. Badejo MA, Van Straalen NM (1992) Effects of atrazine on growth and reproduction of Orchesella cincta (Collembola). Pedobiologia 36:221–230.Google Scholar
  10. Ball JC (1982) Impact of fungicides and miticides on predatory and phytophagous mites associated with pecan foliage. Environ Entomol 11:1001–1004.Google Scholar
  11. Baring MH (1957) Die Milbenfauna eines Ackerbodens and ihre Beeinflussung durch Pflanzenschutzmittel. Z Angew Entomol 41:15–51.Google Scholar
  12. Barnes RD, Bull AT, Poller RC (1973) Studies on the persistence of the organotin fungicide fentin acetate (triphenyltin acetate) in the soil and on surfaces exposed to light. Pestic Sci 4:305–317.Google Scholar
  13. Barrett KL, Grandy N, Harrison EG, Hassan S, Oomen P (eds) (1994) Guidance document on regulatory testing procedures for pesticides with non-target arthropods. SETAC-Europe, Brussels.Google Scholar
  14. Baveco JM, De Roos AM (1996) Assessing the impact of pesticides on lumbricid populations: an individual-based modelling approach. J Appl Ecol 33:1451–1468.Google Scholar
  15. Bayley M (1995) Prolonged effects of the insecticide dimethoate on locomotor behaviour in the woodlouse, Porcellio scaber Ltr. (Isopoda). Ecotoxicology 4:79–90.PubMedGoogle Scholar
  16. Bayley M, Baatrup E (1996) Pesticide uptake and locomotor behaviour in the woodlouse: an experimental study employing video tracking and 1°C-labelling. Ecotoxicology 5:35–45.PubMedGoogle Scholar
  17. Bayoumi OC (1987) Toxic effect of some insecticides and insecticide mixtures against the confused flour beetle Tribolium confusum Duv. Meded Fac Landbouwwet Rijksuniv Gent 52:519–523.Google Scholar
  18. Bedaux JJM, Kooijman SALM (1994) Statistical analysis of bioassays, based on hazard modelling. Environ Ecol Stat 1:303–314.Google Scholar
  19. Bellows TS, Morse JG, Gaston LK (1992) Residual toxicity of pesticides used for control of lepidopteran insects in citrus to the predaceous mite Eusefus stipulatus AthiasHenriot (Acarina, Phytoseiidae). J Appl Entomol 113:493–501.Google Scholar
  20. Blumhorst MR, Weber JB, Swain LR (1991). Efficacy of selected herbicides as influenced by soil properties. J Agric Food Chem 4:297–283.Google Scholar
  21. Bock R (1981) Triphenyltin compounds and their degradation products. Residue Rev 79: 1–270.PubMedGoogle Scholar
  22. Boström U, Lofs-Holmin A (1982) Testing side effects of pesticides on soil fauna—a critical literature review. Report 12, Institutionen für Ekologi och Miljövard. Swedish University of Agricultural Sciences, Uppsala.Google Scholar
  23. Bouwman H, Reinecke Ai (1987) Effects of carbofuran on the earthworm, Eisenia fetida, using a defined medium. Bull Environ Contam Toxicol 38:171–178.PubMedGoogle Scholar
  24. Brauch HJ (1993) Pesticides in the river Rhine. Acta Hydrochim Hydrobiol 21:137–144.Google Scholar
  25. Broadbent AB, Tomlin AD (1982) Comparison of two methods for assessing the effects of carbofuran on soil animal decomposers in cornfields. Environ Entomol 11:1036–1042.Google Scholar
  26. Brown RA (1988) Predicting the effects of pesticides on terrestrial invertebrates. Aspects Appl Biol 17:275–278.Google Scholar
  27. Brunninger B, Viswanathan R, Beese F (1994) Terbuthylazine and carbofuran effects on growth and reproduction within three generations of Eisenia andrei (Oligochaeta). Biol Fertil Soils 18:83–88.Google Scholar
  28. Brussaard L (1998) Soil zoology between the study of soil animals and understanding ecosystem functioning. Appl Soil Ecol (in press).Google Scholar
  29. Brust GE (1990) Direct and indirect effects bf four herbicides on activity of carabid beetles (Coleoptera: Carabidae). Pestic Sci 30:309–320.Google Scholar
  30. Burn AJ (1992). Interactions between cereal pests and their predators and parasites. In: Greig-Smith PW, Frampton GK, Hardy AR (eds) Pesticides, Cereal Farming and the Environment. The Boxworth Project. HMSO, London, pp 110–131.Google Scholar
  31. Byrdy S, Ejmocki Z, Eckstein Z (1965) Organotin compounds as insect chemosterilants. Evaluation of the activity of some triphenyltin derivatives on the Colorado potato beetle (Leptinotarsa decemlineata Say) and house fly (Musca domestica L.). Bull Acad Pol Sci Sér Sci Chim 13:683–686.Google Scholar
  32. Calamari D, Tremeloda P, Di Guardo A, Vighi M (1994) Chlorinated hydrocarbons in pine needles in Europe: fingerprint for the past and recent use. Environ Sci Technol 28:429–434.PubMedGoogle Scholar
  33. Cambell WV, Mount DA, Heming BS (1971) Influence of organic matter content of soil on insecticidal control. J Econ Entomol 61:41–49.Google Scholar
  34. Camper ND, Fleming MM, Skipper HD (1987) Biodegradation of carbofuran in pretreated and non-pretreated soils. Bull Environ Contam Toxicol 39:571–578.PubMedGoogle Scholar
  35. Caselcy JC, Eno CF (1966) Survival and reproduction of two species of earthworm and a rotifer following herbicide treatments. Soil Sci Soc Am Proc 30:346–350.Google Scholar
  36. Cathey B (1982) Comparative toxicities of five insecticides to the earthworm Lumbricus terrestris. Agric Environ 7:73–81.Google Scholar
  37. Chapman RA, Cole CM (1982) Observations on the influence of water and soil pH on the persistence of insecticides. J Environ Sci Health B17:487–504.Google Scholar
  38. Çilgi T, Frampton GK (1994) Arthropod populations under current and reduced-input pesticide regimes: results from the first four treatment years of the MAFF “SCARAB” project. Brighton Crop Protection Conference—Pests and Diseases 1994:653–660.Google Scholar
  39. Çilgi T, Wratten SD, Frampton GK, Holland TM (1993) The long term effects of pesticides on beneficial invertebrates—lessons from the Boxworth project. Pestic Outlook 4:30–35.Google Scholar
  40. Conrady D (1986) Ökologische Untersuchungen über die Wirkung von Umweltchemikalien auf die Tiergemeinschaft eines Grünlandes. Pedobiologia 29:273–284.Google Scholar
  41. Croft BA (1990) Arthropod Biological Control Agents and Pesticides. Wiley, New York. Croll BT (1990) Pesticides in surface and underground waters. Pestic Sci 30:309–320.Google Scholar
  42. Crommentuijn T, Stab JA, Doornekamp A, Estoppey O, Van Gestel CAM (1995) Comparative ecotoxicity of cadmium, chlorpyrifos and triphenyltin hydroxide for four clones of the parthenogenetic collembolan Folsomia candida in an artificial soil. Funct Ecol 9:734–742.Google Scholar
  43. Crommentuijn T, Doodeman CJAM, Doornekamp A, Van Gestel CAM (1997) Life-table study with the springtail Folsomia candida (Willem) exposed to cadmium, chlorpyrifos and triphenyltin hydroxide. In: Van Straalen NM, Lake H (eds) Ecological Risk Assessment of Contaminants in Soil. Chapman & Hall, London, pp 275–291.Google Scholar
  44. Dalby PR, Baker GH, Smith SE (1995) Glyphosate, 2,4-DB and dimethoate: effects on earthworm survival and growth. Soil Biol Biochem 27:1661–1662.Google Scholar
  45. De Clercq R, Pietraszko R (1985) On the influence of pesticides on Carabidae and Staphylinidae in winter wheat. In: Comportement et Effets Secondaires des Pesticides dans le Sol. INRA, Versailles, pp 273–278.Google Scholar
  46. De Snoo GR, Canters KJ, De Jong FMW, Cuperus R (1994) Integral hazard assessment of side effects of pesticides in the Netherlands—a proposal. Environ Toxicol Chem 13:1331–1340.Google Scholar
  47. Demon A, Eijsackers H (1985) The effects of lindane and azinphosmethyl on survival time of soil animals, under extreme or fluctuating temperature and moisture conditions. Z Angew Entomol 100:504–510.Google Scholar
  48. Di Toro OM, Zarba CS, Hansen DJ, Berry WJ, Swartz RC, Cowan CE, Pavlou SP, Allen HE, Thomas NA, Paquin PR (1991) Technical basis for establishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning. Environ Toxicol Chem 10:1541–1583.Google Scholar
  49. Duffield SJ, Aebischer NJ (1994) The effect of spatial scale of treatment with dimethoate on invertebrate population recovery in winter wheat. J Appl Ecol 31:263–281.Google Scholar
  50. Duffield SJ, Jepson PC, Wrattten SD, Sotherton NW (1996) Spatial changes in invertebrate predation rate in winter wheat following treatment with dimethoate. Entomol Exp Appl 78:9–17.Google Scholar
  51. Dzantor EK, Felsot AS (1990) Soil differences in the biodegradation of carbofuran and trimethacarb following pretreatment with these insecticides. Bull Environ Contain Toxicol 45:531–537.Google Scholar
  52. Edwards CA (1966) Insecticide residues in soil. Residue Rev 13:83–132.Google Scholar
  53. Edwards CA (1992) Testing the effects of chemicals on earthworms: the advantages and limitations of field tests. In: Greig-Smith PW, Becker H, Edwards PJ, Heimbach F (eds) Ecotoxicology of Earthworms. Intercept, Andover, pp 75–84.Google Scholar
  54. Edwards CA (1995) The influence of plant protection on soil communities. In: Edwards CA, Abe T, Striganova BR (eds) Structure and Function of Soil Communities. Kyoto University Press, Kyoto, pp 93–110.Google Scholar
  55. Edwards CA, Bohlen PJ (1992) The effects of toxic chemicals on earthworms. Rev Environ Contain Toxicol 125:23–99.Google Scholar
  56. Edwards CA, Stafford CA (1979) Interactions between herbicides and the soil fauna. Ann Appl Biol 91:132–137.Google Scholar
  57. Edwards CA, Thompson AR (1973) Pesticides and the soil fauna. Residue Rev 45:1–79.PubMedGoogle Scholar
  58. Edwards CA, Thompson AR (1975) Some effects of insecticides on predatory beetles. Ann Appl Biol 80:132–135.Google Scholar
  59. Edwards PJ, Brown SM (1982) Use of grassland plots to study the effect of pesticides on earthworms. Pedobiologia 24:145–150.Google Scholar
  60. Edwards Pi, Coulson JM (1992) Choice of earthworm species for laboratory tests. In: Greig-Smith PW, Becker H, Edwards PJ, Heimbach F (eds) Ecotoxicology of Earthworms. Intercept, Andover, pp 36–43.Google Scholar
  61. Eijsackers H (1994) Ecotoxicology of soil organisms: seeking the way through a pitch-dark labyrinth. In: Donker MH, Eijsackers H, Heimbach F (eds) Ecotoxicology of Soil Organisms. Lewis, Boca Raton, pp 3–32.Google Scholar
  62. Eijsackers H, Ltkke H (1996) Soil ecotoxicological risk assessment. Ecosyst Health 2: 259–270.Google Scholar
  63. Eijsackers H, Van de Bund CF (1980) Effects on soil fauna. In: Hance RJ (ed) Interactions Between Herbicides and the Soil. Academic Press, London, pp 255–305.Google Scholar
  64. El-Wakil HB, Radwan MA (1991) Biochemical studies on the terrestrial snail Eubania vermiculata (Müller) treated with some pesticides. J Environ Sci Health 26:479–489.Google Scholar
  65. Esser HO, Dupuis G, Ebert E, Marco GJ, Vogel C (1975) s-Triazines. In: Kearney PC, Kaufman DD (eds) Herbicides. Chemistry, Degradation and Mode of Action, Vol. 1. Dekker, New York, pp 129–208.Google Scholar
  66. Fâbiân M, Petersen H (1994) Short-term effects of the insecticide dimethoate on activity and spatial distribution of a soil-inhabiting collembolan Folsomia fimetaria Linné (Collembola: Isotomidae). Pedobiologia 38:289–302.Google Scholar
  67. Fayolle L (1979) Consequences de l’apport de contaminants sur les lombriciennes. III. Essais de laboratoire. Doc Pedozool 1:34–65.Google Scholar
  68. Felding G (1991) Leaching of atrazine into ground water. Pestic Sci 35:39–43.Google Scholar
  69. Fent K (1996) Ecotoxicology of organotin compounds. Crit Rev Toxicol 26:1–117.PubMedGoogle Scholar
  70. Filser J, Fromm H, Nagel RF, Winter K (1995) Effects of previous intensive agricultural management on microorganisms and the biodiversity of soil fauna. Plant Soil 170:123–129.Google Scholar
  71. Fischer E, Farkas S, Hornung E, Past T (1997) Sublethal effects of an organophosphorous insecticide, dimethoate, on the isopod Porcellio scaber Latr. Comp Biochem Physiol 116C:161–166.Google Scholar
  72. Fischer L, Chambon JP (1987) Faunistical inventory of cereal arthropods after flowering and incidence of insecticide treatments with deltamethrin, dimethoate and phosalone on the epigeal fauna. Meded Fac Landbouwwet Rijksuniv Gent 52:201–211.Google Scholar
  73. Fisher SW (1984) A comparison of standardized methods for measuring the biological activity of pesticides to the earthworm, Lumbricus terrestris. Ecotoxicol Environ Saf 8:564–571.PubMedGoogle Scholar
  74. Floate K, Elliot RH, Doane JF, Gillott C (1989) Field bioassay to evaluate contact and residual toxicities of insecticides to carabid beetles (Coleoptera: Carabidae) J Econ Entomol 82:1543–1547.PubMedGoogle Scholar
  75. Forbes TL, Forbes VE (1993) A critique of the use of distribution-based extrapolation models in ecotoxicology. Funct Ecol 7:249–254.Google Scholar
  76. Fox CJS (1964) The effects of five herbicides on the numbers of certain invertebrate animals in grassland soil. Can J Plant Sci 44:405–409.Google Scholar
  77. Frampton GK (1988) The effects of some commonly-used foliar fungicides on Collembola in winter barley: laboratory and field studies. Ann Appl Biol 113:1–14.Google Scholar
  78. Frampton GK (1994) Sampling to detect effects of pesticides on epigeal Collembola (springtails). Aspects Appl Biol 37:121–130.Google Scholar
  79. Frampton GK, Çiïgi T (1992) Long-term effects of pesticides on arthropods in UK arable crops: preliminary results from the “SCARAB” project. Aspects Appl Biol 31:69–76.Google Scholar
  80. Frampton GK, Langton SD, Greig-Smith PW, Hardy ÄR (1992) Changes in the soil fauna at Boxworth. In: Greig-Smith PW, Frampton GK, Hardy AR (eds) Pesticides, Cereal Farming and the Environment. The Boxworth Project. HMSO, London, pp 132–143.Google Scholar
  81. Franz JM (1974) Die Prüfung von Nebenwirkungen der Pflanzenschutzmittel auf Nutzarthropoden im Laboratorium—ein Sammelbericht. Z Pflanzenkr Pflanzenschutz 81: 141–174.Google Scholar
  82. Fratello B, Bertolani R, Sabatini MA, Mola L, Rassu MA (1985) Effects of atrazine on soil microarthropods in experimental maize fields. Pedobiologia 28:161–168.Google Scholar
  83. Frey F (1976) Untersuchungen über die Wirkungen von im Obstbau verwendeten Herbizide auf den Testnematoden Acrobeloides buetschlii (de Man, 1884) Steiner and Buhrer, 1933. Z Pflanzenkr Pflanzenschutz 88:434–441.Google Scholar
  84. Getzin LW(1973) Persistence and degradation of carbofuran in soil. Environ Entomol 2: 461–467.Google Scholar
  85. Getzin LW (1985) Chemical control of the springtail Onychiurus pseudarmatus (Collembola: Onychiuridae). J Econ Entomol 78:1337–1340.Google Scholar
  86. Ghabbour SI, Imam M (1967) The effect of five herbicides on three Oligochaete species. Rev Ecol Biol Sol 4:119–122.Google Scholar
  87. Gholson LE, Beegle CC, Best RL, Owens JC (1978) Effects of several commonly used insecticides on cornfield carabids in Iowa. J Econ Entomol 71:416–418.Google Scholar
  88. Giardina MC, Giardi MT, Filacchioni G (1982) Atrazine metabolism by Nocardia: elucidation of initial pathway and synthesis of potential metabolites. Agric Biol Chem 46: 1439–1445.Google Scholar
  89. Gibbs MH, Wicker LF, Stewart AI (1996) A method for assessing sublethal effects of contaminants in soils to the earthworm, Eisenia foetida. Environ Toxicol Chem 15: 360–368.Google Scholar
  90. Gilman AP, Vardanis A (1974) Carbofuran. Comparative toxicity and metabolism in the worms Lumbricus terrestris L. and Eisenia foetida S. J Agric Food Chem 22: 625–628.PubMedGoogle Scholar
  91. Goodman ED (1982) Modeling effects of pesticides on populations of soil/litter invertebrates in an orchard ecosystem. Environ Toxicol Chem 1:45–60.Google Scholar
  92. Graf von Baudissin F (1952) Die Wirkung von Pflanzenschutzmitteln auf Collembolen and Milben in verschiedenen Böden. Zool Jahrb Abt Syst Oekol Geogr Tiere 81:47–90.Google Scholar
  93. Grégoire-Wibo C (1983a) Incidences écologiques des traitements phytosanitaires en culture de betterave sucrière, essais expérimentaux en champ. I. Les Collemboles épigés. Pedobiologia 25:37–48.Google Scholar
  94. Grégoire-Wiby C (1983b) Incidences écologiques des traitements phytosanitaires en culture de betterave sucrière. II. Acariens, Polydesmes, Staphylins, Cryptophagides et Carabides. Pedobiologia 25:93–108Google Scholar
  95. Gregory DA, Johnson DL, Thompson BH (1994) The toxicity of bran baits, formulated with carbaryl, chlorpyrifos and dimethoate, on yellow mealworms (Tenebrio molitor L.). J Agric Entomol 11:85–94.Google Scholar
  96. Greig-Smith PW (1992) A European perspective on ecological risk assessment, illustrated by pesticide registration procedures in the United Kingdom. Environ Toxicol Chem 11:1673–1689.Google Scholar
  97. Greig-Smith PW, Frampton GK, Hardy AR (eds) (1992) Pesticides, Cereal Farming and the Environment. The Boxworth Project. HMSO, London.Google Scholar
  98. Hagens M, Westheide W (1987) Subletale Schädigungen bei Enchytreus minutus (Oligochaeta, Annelida) durch das Insektizid Parathion: Veränderungen in der Ultrastruktur von Chloragog-und Darmzellen in Abhängigkeit von Belastüngsdauer. Verh Ges Ökol (Gießen 1986) 16:423–426.Google Scholar
  99. Hagley EAC, Pree DJ, Holliday NJ (1980) Toxicity of insecticides to some orchard carabids (Coleoptera: Carabidae). Can Entomol 112:457–462.Google Scholar
  100. Halley IM, Thomas CFG, Jepson PC (1996) A model for the spatial dynamics of linyphiid spiders in farmland. J Appl Ecol 33:471–492.Google Scholar
  101. Hamers T, Notenboom J, Eijsackers HJP (1996) Validation of laboratory toxicity data on pesticides for the field situation. Report 719102046. National Institute of Public Health and the Environment. RIVM, Bilthoven.Google Scholar
  102. Hague A, Ebing W (1983) Toxicity determination of pesticides to earthworms in the soil substrate. Z Pflanzenkr Pflanenschutz 90:395–408.Google Scholar
  103. Hara AH, Kaya HK (1983) Toxicity of selected organophosphate and carbamate pesticides to infective juveniles of the entomogenous nematode Neoaplectana carpocapsae (Rhabditida: Steinernematidae). Environ Entomol 12:496–501.Google Scholar
  104. Harris CR (1966) Influence of soil type on the activity of insecticides in soil. J Econ Entomol 59:1221–1225.Google Scholar
  105. Harris CR (1967) Further studies on the influence of soil moisture on the toxicity of insecticides in soil. J Econ Entomol 60:41–44.Google Scholar
  106. Harris CR (1969) Insecticide pollution and soil organisms. Proc Entomol Soc Ont 100: 14–29.Google Scholar
  107. Harris CR, Mazurek Lll (1964) Comparison of the toxicity to insects of certain insecticides applied by contact and in the soil. J Econ Entomol 57:689–702.Google Scholar
  108. Harris CR, Chapman RA, Tolman JH, Moy P, Henning K, Harris C (1988) A comparison of the persistence in a clay loam of single and repeated annual applications of seven granular insecticides used for corn rootworm control. J Environ Sci Health B23: 1–32.Google Scholar
  109. Harvey J Jr, Pease HL (1973) Decomposition of methomyl in soil. J Agric Food Chem 21:784–786.PubMedGoogle Scholar
  110. Hassan SA (1985) Standard methods to test the side-effects of pesticides on natural enemies of insects and mites developed by the IOBC/WPRS working group “Pesticides and Beneficial Organisms.” OEPP/EPPO Bull 15:214–255.Google Scholar
  111. Heimbach F (1984) Correlations between three methods for determining the toxicity of chemicals to earthworms. Pestic Sci 15:605–611.Google Scholar
  112. Heimbach F (1985) Comparison of laboratory methodes, using Eisenia foetida and Lumbricus terrestris for the assessment of the hazard of chemicals to earthworms. Z Pflanzenkr Pflanzenschutz 92:186–193.Google Scholar
  113. Heimbach F (1992a) Effects of pesticides on earthworm populations: comparison of results from laboratory and field tests. In: Greig-Smith PW, Becker H, Edwards PJ, Heimbach F (eds) Ecotoxicology of Earthworms. Intercept, Andover, pp 100–106.Google Scholar
  114. Heimbach F (1992b) Correlation between data from laboratory and field tests for investi-gating the toxicity of pesticides to earthworms. Soil Biol Biochem 24:1749–1753.Google Scholar
  115. Heimbach U (1991) Effects of some insecticides on aphids and beneficial arthropods in winter wheat. IOBCIWPRS Bull 14:131–139.Google Scholar
  116. Heimbach U, Abel C, Siebers J, Wehling A (1992) Influence of different soils on the effects of pesticides on carabids and spiders. Aspects Appl Biol 31:49–59.Google Scholar
  117. Heimbach U, Leonard P, Khoshab A, Miyakawa R, Abel C (1994) Assessment of pesticide safety to the carabid beetle, Poecilus cupreus, using two different semifield enclosures. In: Donker MH, Eijsackers H, Heimbach F (eds) Ecotoxicology of Soil Organisms. Lewis, Boca Raton, pp 273–285.Google Scholar
  118. Heungens A (1970) L’influence de quelques pesticides sur la faune du sol dans la culture de l’azalée. Meded Fac Landbouwwet Rijksuniv Gent 35:717–729.Google Scholar
  119. Heungens A, Van Daele E (1979) Toxicity of insecticides and nematicides on soil mites and Collembola in pine litter substrate. Meded Fac Landbouwwet Rijksuniv Gent 44: 379–393.Google Scholar
  120. Hoekstra JA, Van Ewijk PH (1993) Alternatives for the no-observed-effect level. Environ Toxicol Chem 12:187–194.Google Scholar
  121. Hoekstra JA, Vaal MA, Notenboom J, Slooff W (1994) Variation in the sensitivity of aquatic species to toxicants. Bull Environ Contam Toxicol 53:98–105.PubMedGoogle Scholar
  122. Howard PH (1991) Handbook of Environmental Fate and Exposure Data for Organic Chemicals, Vol. III, Pesticides. Lewis, Chelsea, MI.Google Scholar
  123. Hoy JB (1980) Ecological impact of lindane on a pine plantation soil microarthropod community. Environ Entomol 9:164–174.Google Scholar
  124. IOBC (1988) Guidelines for testing the effects of pesticides on beneficials: short description of test methods. International Organization for Biological and Integrated Control of Noxious Animals and Plants, SROP/WPRS Bull 11:1–143.Google Scholar
  125. ISO (1994) ISO/Draft soil quality—effects of soil pollutants on Collembola. International Standardization Organization, Geneva.Google Scholar
  126. Jagers op Akkerhuis GAJM, Hamers THM (1992) Substrate-dependent bioavailability of deltamethrin for the epigeal spider Oedothorax apicatus (Blackwall) (Aranaea, Erigonidae). Pestic Sci 36:59–68.Google Scholar
  127. Jepson PC (1988) Ecological characteristics and the susceptibility of nontarget invertebrates to long term pesticide side effects. BCPC Monogr 40:191–200.Google Scholar
  128. Jepson PC (1989) The temporal and spatial dynamics of pesticide side-effects on non-target invertebrates. In: Jepson PC (ed) Pesticides and Non-target Invertebrates. Intercept, Wimborne, pp 95–127.Google Scholar
  129. Jepson PC (1997) Scale dependency in the ecological risks posed by pollutants. In: Van Straalen NM, Lpkke H (eds) Ecological Risk Assessment of Contaminants in Soil. Chapman & Hall, London, pp 175–189.Google Scholar
  130. Jepson PC, Thacker JRM (1990) Analysis of the spatial component of pesticide side-effects on non-target invertebrate populations and its relevance to hazard analysis. Funct Ecol 4:349–355.Google Scholar
  131. Jepson PC, Sherratt TN (1991) Predicting the long-term impact of pesticides on predatory invertebrates. In: Proceedings Brighton Crop Protection Council Conference 1991. BCPC, Thornton Heath, pp 911–919.Google Scholar
  132. Jepson PC, Sherratt TN (1996) The dimensions of space and time in the assessment of ecotoxicological risks. In: Baird DJ, Maltby L, Greig-Smith PW, Douben PET (eds) Ecotoxicoÿogy: Ecological Dimensions. Chapman & Hall, London, pp 43–54.Google Scholar
  133. Jepson PC, Chaudhry AG, Salt DW, Ford MG, Efe E, Chowdhury ABMNU (1990) A reductionist approach towards short-term hazard analysis for terrestrial invertebrates exposed to pesticides. Funct Ecol 4:339–347.Google Scholar
  134. Joy VC, Chakravorty PP (1991) Impact of insecticides on nontarget microarthropod fauna in agricultural soil. Ecotoxicol Environ Saf 22:8–16.PubMedGoogle Scholar
  135. Kahn SU (1980) Pesticides in the Soil Environment. Elsevier, Amsterdam.Google Scholar
  136. Kammenga JE, Van Koert PHG, Riksen JAG, Korthals GW, Bakker J (1996) A toxicity test in artificial soil based on the life-history strategy of the nematode Plectus acuminatus. Environ Toxicol Chem 15:722–727.Google Scholar
  137. Karnak RE, Hamelink JL (1982) A standardized method for determining the acute toxicity of chemicals to earthworms. Ecotoxicol Environ Saf 6:216–222.Google Scholar
  138. Kathpal TS, Yadav PR, Kushwana KS (1981) Residues of some organochlorine insecticides in soils under different agro-climatic conditions of India. Indian J Entomol 43:420–427.Google Scholar
  139. Kenaga EE (1965). Triphenyl tin compounds as insect reproduction inhibitors. J Econ Entomol 58:4–8.Google Scholar
  140. Kjar C, Jepson PC (1995) The toxic effects of direct pesticide exposure for a nontarget weed-dwelling chrysomelid beetle (Gastrophysa polygoni) in cereals. Environ Toxicol Chem 14:993–999.Google Scholar
  141. Kolbe A, Bernasch A, Stock M, Schütte HR, Dedek W (1991) Persistence of the insecticide dimethoate in three different soils under laboratory conditions. Bull Environ Contam Toxicol 46:492–498.PubMedGoogle Scholar
  142. Kooijman SALM (1987) A safety factor for LCn values allowing for differences in sensitivity among species. Water Res 21:269–276.Google Scholar
  143. Kooijman SALM (1996) An alternative for NOEC exists, but the standard model has to be abandoned first. Oikos 75:310–316.Google Scholar
  144. Kooijman SALM, Bedaux JJM (1996) The Analysis of Aquatic Toxicity Data. VU University Press, Amsterdam.Google Scholar
  145. Krogh PH (1991) Perturbation of the soil microarthropod community with the pesticides benomyl and isofenphos. I. Population changes. Pedobiologia 35:71–88.Google Scholar
  146. Krogh PH (1994) Microarthropods as bioindicators. Ph.D. thesis, University of Arhus and National Environmental Research Institute, Silkeborg.Google Scholar
  147. Krogh PH (1995) Does a heterogenous distribution of food or pesticide affect the outcome of toxicity tests with Collembola? Ecotoxicol Environ Saf 30:158–163.PubMedGoogle Scholar
  148. Kula C (1994a) A prolonged laboratory test on sublethal effects of pesticides on Eisenia fetida. In: Donker MH, Eijsackers H, Heimbach F (eds) Ecotoxicology of Soil Organisms. Lewis, Boca Raton, pp 257–262.Google Scholar
  149. Kula H (1994b) Species-specific sensitivity differences of earthworms to pesticides in laboratory tests. In: Donker MH, Eijsackers H, Heimbach F (eds) Ecotoxicology of Soil Organisms. Lewis, Boca Raton, pp 241–250.Google Scholar
  150. Kula H, Kokta C (1992) Side effects of selected pesticides on earthworms under laboratory and field conditions. Soil Biol Biochem 24:1711–1714.Google Scholar
  151. Lanno RP, Stephenson GL, Wren CD (1997) Applications of toxicity curves in assessing the toxicity of diazinon and pentachlorophenol to Lumbricus terrestris in natural soils. Soil Biol Biochern 29:689–692.Google Scholar
  152. Larson RJ, Cowan CE (1995) Quantitative application of biodegradation data to environmental risk and exposure assessments. Environ Toxicol Chem 14:1433–1442.Google Scholar
  153. Laskowski, R (1995) Some good reasons to ban the use of NOEC, LOEC and related concepts in ecotoxicology. Oikos 73:140–144.Google Scholar
  154. Laskowski R, Maryanski M, Pyza E, Wojtusiak J (1996) Sublethal toxicity tests for long-lived iteroparous invertebrates: searching for a solution. In: Van Straalen NM, Krivoiutsky DA (eds) Bioindicator Systems for Soil Pollution. Kluwer, Dordrecht, pp 45–53.Google Scholar
  155. Lebrun Ph (1977) Incidences écologiques des pesticides sur la faune du sol. Pedologie 27:67–91.Google Scholar
  156. Legrand MF, Costentin E, Bruchet A (1991) Occurrence of 38 pesticides in various French surface and ground waters. Environ Toxicol Chem 12:985–996.Google Scholar
  157. Leistra M (1986) Modelling the behaviour of organic chemicals in soil and ground water. Pestic Sci 17:256–264.Google Scholar
  158. Lexmond TM, Edelman T, Van Driel W (1986) Voorlopige referentiewaarden en huidige achtergrondgehalten voor een aantal zware metalen en arseen in bovengrond van natuurterreinen en landbouwgronden. VTCB-advies A86/02. Technical Committee for Soil Protection, The Hague, Netherlands.Google Scholar
  159. Li CY, Nelson EE (1985) Persistence of benomyl and captan and their effects on microbial activity in field soils. Bull Environ Contam Toxicol 34:533–540.PubMedGoogle Scholar
  160. Loch JPG (1990) Accumulation and leaching of the fungicide fentin acetate and intermediates in sandy soils. Water Air Soil Pollut 53:119–129.Google Scholar
  161. Lofs-Holmin A (1980) Measuring growth of earthworms as a method of testing sublethal toxicity of pesticides. Experiments with benomyl and trichloroacetic acid (TCA). Swed J Agric Res 10:25–33.Google Scholar
  162. Lofs-Holmin A (1982) Measuring cocoon production of the earthworm Allolobophora caliginosa (Say.) as a method of testing sublethal toxicity of pesticides. Swed J Agric Res 12:117–119.Google Scholar
  163. Lokke H (1994) Ecotoxicological extrapolation: tool or toy? In: Donker MH, Eijsackers H, Heimbach F (eds) Ecotoxicology of Soil Organisms. Lewis, Boca Raton, pp 411–425.Google Scholar
  164. Lokke H, Van Gestel CAM (eds) (1998) Development, improvement and standardization of test systems for assessing sublethal effects of chemicals on fauna in soil ecosystems. Wiley, New York (in press).Google Scholar
  165. Lake H, Christensen B, Moller J (1995) Extrapolation of the effects of glyphosate from the laboratory to the field. Arch Ochr Srodowiska 1:109–120.Google Scholar
  166. Lorin SJ, Snider RJ, Robertson LS (1981) The effects of three tillage practises on Collembola and Acarina populations. Pedobiologia 22:172–184.Google Scholar
  167. Luff ML, Clements RO, Bale JS (1990) An integrated approach to assessing effects of some pesticides in grassland. In: Proceedings, Brighton Crop Protection Council Conference—Pests and Diseases 1990 3B-2:143–152.Google Scholar
  168. Lynch MR (ed) (1995) Procedures for assessing the environmental fate and ecotoxicity of pesticides. SETAC-Europe, Brussels.Google Scholar
  169. Ma W, Bodt J (1993) Differences in toxicity of the insecticide chlorpyrifos to six species of earthworms (Oligochaeta, Lumbricidae) in standardized soil tests. Bull Environ Contam Toxicol 50:864–870.PubMedGoogle Scholar
  170. Ma WC (1983) Regenwormen als bio-indicators van bodemverontreiniging. Bodembeschermingsreeks Ministerie VROM, Nr 15. Staatsuitgeverij, The Hague, Netherlands.Google Scholar
  171. MAFF (1986) Data requirements for approval under the control of pesticides regulations 1986. Ministry of Agriculture, Fisheries and Food, Worplesdon.Google Scholar
  172. Mallow D, Snider RJ, Roberson LS (1985) Effects of different management practises on Collembola and Acarina in corn production systems. II. The effects of moldboard plowing and atrazine, Pedobiologia 28:115–131.Google Scholar
  173. Mani M, Krishnamoorty A (1986) Susceptibility of Telenomus remus Nixon, an exotic parasitoid of Spodoptera litura (F.), to some pesticides. Trop Manage 32:49–51.Google Scholar
  174. Martin NA (1976) Effect of four insecticides on the pasture ecosystem. V. Earthworms (Oligochaeta: Lumbricidae) and Arthropoda extracted by wet sieving and salt flotation. N Z J Agric Res 19:111–115.Google Scholar
  175. Martin NA (1978) Effect of four insecticides on the pasture ecosystem. VI. Arthropoda dry heat-extracted from small soil cores, and conclusions. N Z J Agric Res 21:307–319.Google Scholar
  176. Martin NA (1980) Earthworm (Oligochaeta: Lumbricidae) populations and late summer pasture renovation. N Z J Agric Res 23:417–419.Google Scholar
  177. Martin NA (1986) Toxicity of pesticides to Allolobophora caliginosa (Oligochaeta: Lumbricidae) N Z J Agric Res 29:699–706.Google Scholar
  178. Mirgain I, Green GA, Monteil H (1993) Degradation of atrazine in laboratory microcosms: isolation and identification of the biodegrading bacteria. Environ Toxicol Chem 12:1627–1634.Google Scholar
  179. Mola L, Sabatini MA, Fratello B, Bertolani R (1987) Effects of atrazine on two species of Collembola (Onychiuridae) in laboratory tests. Pedobiologia 30:145–149.Google Scholar
  180. Moosbeckhofer R (1983a) Laboruntersuchungen über den Einfluß von Diazinon, Carbofuran and Chlorfenvinphos auf die Laufaktivität von Poecilus cupreus L. (Col., Carabidae). Z Angew Entomol 95:15–21.Google Scholar
  181. Moosbeckhofer R (1983b) Laboruntersuchungen über den Einfluß einiger Pflanzenschutzmittel auf Ei-and Larvenstadien von Poecilus cupreus L. and Poecilus sericeus Fischer d.w. (Col., Carabidae). Z Angew Entomol 95:513–523.Google Scholar
  182. Moriarty F (1972) The effects of pesticides on wildlife: exposures and residues. Sci Total Environ 1:267–288.PubMedGoogle Scholar
  183. Mulla MS, Mian LS, Kawecki JA (1981) Distribution, transport and fate of the insecticides malathion and parathion in the environment. Residue Rev 81:1–172.PubMedGoogle Scholar
  184. Neuhauser E, Callahan C (1990) Growth and reproduction of the earthworm Eisenia fetida exposed to sublethal concentrations of organic chemicals. Soil Biol Biochem 22:175–179.Google Scholar
  185. Neuhauser EF, Durkin PR, Malecki MR, Anatra M (1986) Comparative toxicity of ten organic chemicals to four earthworm species. Comp Biochem Physiol 83:197–200.Google Scholar
  186. Niederlehner BR, Pratt JR, Buikema All, Cairns JJ (1986) Comparison of estimates of hazard derived at three levels of complexity. In: Cairns J (ed) Community Toxicity Testing. ASTM STP 920. American Society for Testing and Materials, Philadelphia, pp 30–48.Google Scholar
  187. Norton SB, Rodier DJ, Gentile JH, Van der Schalie WH, Wood WP, Slimak MW (1992) A framework for ecological risk assessment at the EPA. Environ Toxicol Chem 11: 1663–1672.Google Scholar
  188. OECD (1984) Guideline for the testing of chemicals. No 207. Earthworm acute toxicity. Organization for Economic Co-operation and Development, Paris.Google Scholar
  189. Okkerman PC, Van de Plassche EJ, Emans HJB, Canton JH (1993) Validation of some extrapolation methods with toxicity data derived from multiple species experiments. Ecotoxicol Environ Saf 25:341–359.PubMedGoogle Scholar
  190. Onyeocha F, Fuzeau-Braesch S (1990) Effets de différents insecticides sur la reproduction de criquet migrateur Locusta migratoria. C R Seances Soc Biol Fil 184:231–239.Google Scholar
  191. Ou LT, Gancarz DH, Wheeler WB, Rao PSC, Davidson JM (1982) Influence of soil temperature and soil moisture on degradation and metabolism of carbofuran in soils. J Environ Qual 11:293–302.Google Scholar
  192. Pols HB, Hieltjes AHM, Kouwe FA (1991) The occurrence and the sources of black list substances in two river basins in the Netherlands. Water Sci Technol 24:55–67.Google Scholar
  193. Popovici I, Stan G, Stefan V, Tomescu R, Dumea A, Tarta A, Dan F (1977) The influence of atrazine on soil fauna. Pedobiologia 17:209–215.Google Scholar
  194. Potter DA, Buxton MC, Redmond CT, Patterson CG, Powell AJ (1990) Toxicity of pesticides to earthworms (Oligochaeta: Lumbricidae) and effect on thatch degradation in Kentucky bluegrass turf. J Econ Entomol 83:2362–2369.Google Scholar
  195. Powell W, Dean GJ, Bardner R (1985) Effects of pirimicarb, dimethoate and benomyl on natural enemies of cereal aphids in winter wheat. Ann Appl Biol 106:235–242.Google Scholar
  196. Rajagopal BS, Brahmaprakash GP, Reddy BR, Singh UD, Sethunathan N (1984a) Effect and persistence of selected carbamate pesticides in soil. Residue Rev 93:1–153.Google Scholar
  197. Rajagopal BS, Chendrayan B, Reddy BR, Sethunathan N (1984b) Metabolism of carbaryl and carbofuran by soil-enrichment and bacterial cultures. Can J Microbiol 30:1458–1466.Google Scholar
  198. Rajagopal BS, Soudamini P, Sethunathan N (1986) Accelerated degradation of carbaryl and carbofuran in a flooded soil pretreated with hydrolysis products, 1-naphthol and carbofuran phenol. Bull Environ Contam Toxicol 36:827–832.PubMedGoogle Scholar
  199. Reddy MV, Reddy VR (1992) Effects of organochlorine, organophosphorus and carbamate insecticides on the population structure of earthworms in a semi-arid tropical grassland. Soil Biol Biochem 24:1733–1738.Google Scholar
  200. Riepert F, Kula C (1996) Development of laboratory methods for testing effects of chemicals and pesticides on Collembola and earthworms. Mitt BBA 320:1–82.Google Scholar
  201. Risch SJ, Pimentel D, Grover H (1986) Corn monoculture versus old field: effects of low levels of insecticides. Ecology 67:505–515.Google Scholar
  202. Roark JH, Dale JL (1979) The effect of turf fungicides on earthworms. Ark Acad Sci Proc 33:71–74.Google Scholar
  203. Roberts BL, Dorough HW (1984) Relative toxicities of chemicals to the earthworm Eise-nia foetida. Environ Toxicol Chem 3:67–78.Google Scholar
  204. Roderiguez LD, Dorough HW (1977) Degradation of carbaryl by soil microorganisms. Arch Environ Contam Toxicol 6:47–56.Google Scholar
  205. Rtimbke J, Bauer C, Marschner A (1996) Hazard assessment of chemicals in soil. Proposed ecotoxicological test strategy. Environ Sci Pollut Res 3:78–82.Google Scholar
  206. Ronday R, Van Kammen-Polman AMM, Dekker A, Houx NWH, Leistra M (1997) Persistence and toxicological effects of pesticides in topsoil: use of equilibrium partitioning theory. Environ Toxicol Chem 16:601–607.Google Scholar
  207. Ruppel RF, Laughlin CW (1977) Toxicity of some soil pesticides to earthworms. J Kans Entomol Soc 50:113–118.Google Scholar
  208. Sabatini MA, Pederozoli A, Fratello B, Bertolani R (1979) Microarthropod communities in soil treated with atrazine. Boll Zool 46:335–341.Google Scholar
  209. Sahoo A, Sahu SK, Sharmita M, Sethunathan N (1990) Persistence of carbamate insecticides, carbosulfan and carbofuran in soils as influenced by temperature and microbial activity. Bull Environ Contam Toxicol 44:94–95.Google Scholar
  210. Samsoe-Petersen L (1983) Laboratory method for testing side effects of pesticides on juvenile stages of the predatory mite, Phytoseiulus persimilis (Athias-Henriot) (Acarina, Phytoseiidae) based on detached bean leaves. Entomophaga 28:167–178.Google Scholar
  211. Schaefer CH, Miura T, Dupras EFJ, Wilder WH (1981) Environmental impact of the fungicide tr iphenyltin hydroxide after application to rice fields. J Econ Entomol 74: 597–600.Google Scholar
  212. Schlosser HJ, Riepert F (1992) Entwicklung eines Prüfverfarhrens für Chemikalien an Bodenraubmilben (Gamasina). Teil 2: Erste Ergebnisse mit Lindan and Kaliumdichromat in subletaler Dosierung. Zool Beitr NF 34:413–433.Google Scholar
  213. Scopes NEA, Lichtenstein EP (1967) The use of Folsomia fimetaria and Drosophila melanogaster as test insects for the detection of insecticide residues. J Econ Entomol 60:1537–1541.Google Scholar
  214. Seastedt TT (1984) The role of microarthropods in decomposition and mineralization processes. Annu Rev Entomol 29:25–46.Google Scholar
  215. Sheehan PJ, Airier RP, Newhook RC (1986) Evaluation of simple generic aquatic ecosystem tests to screen the ecological impact of pesticides. In: Cairns J Jr (ed) Community Toxicity Testing. ASTM STP 920. American Society for Testing and Materials, Philadelphia, pp 158–179.Google Scholar
  216. Sherratt TN, Jepson PC (1993) A metapopulation approach to modelling the long-term impact of pesticides on invertebrates. J Appl Ecol 30:696–705.Google Scholar
  217. Shore RF, Douben PET (1994) Predicting ecotoxicological impacts of environmental contaminants on terrestrial small mammals. Rev Environ Contam Toxicol 134:49–89.PubMedGoogle Scholar
  218. Smissaert HR, Jansen AAM (1984) On the variation of toxic effects over species, its cause, and analysis by “structure-selectivity relations”. Ecotoxicol Environ Saf 8: 294–302.PubMedGoogle Scholar
  219. Smith EP, Cairns J Jr (1993) Extrapolation methods for setting ecological standards for water quality: statistical and ecological concerns. Ecotoxicology 2:203–219.PubMedGoogle Scholar
  220. Snider RJ, Moore JC, Subagja J (1985) Effects of paraquat and atrazine on non-target soil arthropods. In: FM D’Itri (ed) A Systems Approach to Conservation Tillage. Lewis, Chelsea, MI, pp 145–153.Google Scholar
  221. Somasundaram L, Coats JR, Racke KD, Shanbhag VM (1991) Mobility of pesticides and their hydrolysis metabolites in soil. Environ Toxicol Chem 10:185–194.Google Scholar
  222. Sorensen FF, Bayley M, Baatrup E (1995) The effects of sublethal dimethoate exposure on the locomotor behavior of the collembolan Folsomia candida (Isotomodae). Environ Toxicol Chem 14:1578–1590.Google Scholar
  223. Stab JA, Cofino WP, Van Hattum B (1994) Assessment of transport routes of triphenyltin used in potato culture in the Netherlands. Anal Chim Acta 286:335–341.Google Scholar
  224. Stegeman LC (1964) The effects of the carbamate insecticide carbaryl upon forest soil mites and Collembola. J Econ Entomol 57:803–808.Google Scholar
  225. Stenersen J (1979a) Action of pesticides on earthworms. Part I: The toxicity of cholinesterase-inhibiting insecticides to earthworms as evaluated by laboratory tests. Pestic Sci 10:66–74.Google Scholar
  226. Stenersen J (1979b) Action of pesticides on earthworms. Part III: Inhibition and reactivation of cholinesterases in Eisenia foetida (Savigny) after treatment with cholinesterase-inhibiting insecticides. Pestic Sci 10:113–112.Google Scholar
  227. Stenersen J, Brekke E, Engelstad F (1992) Earthworms for toxicity testing; species differences in response towards cholinesterase inhibiting insecticides. Soil Biol Biochem 24:1761–1764.Google Scholar
  228. Stenersen J, Gilman A, Vardanis A (1973) Carbofuran: its toxicity to and metabolism by earthworm (Lumbricus terrestris). J Agric Food Chem 21:166–171.PubMedGoogle Scholar
  229. Stringer A, Lyons CH (1974) The effect of benomyl and thiophanate-methyl on earthworm populations in apple orchards. Pestic Sci 5:189–196.Google Scholar
  230. Stringer A, Wright AM (1976) The toxicity of benomyl and some related 2-substituted benzimidazoles to the earthworm Lumbricus terrestris. Pestic Sci 7:459–464.Google Scholar
  231. Subagja J, Snider RJ (1981) The side effects of the herbicides atrazine and paraquat upon Folsomia candida and Tullbergia granulata (Insecta, Collembola). Pedobiologia 22:141–152.Google Scholar
  232. Tanigoshi LK, Fagerlund J (1984) Implications of parathion resistance and toxicity of citricultural pesticides to a strain of Euseius hibisci (Chant) (Acarina: Phytoseiidae) from the San Joaquin Valley of California. J Econ Entomol 77:789–793.Google Scholar
  233. Thacker JRM, Jepson PC (1993) Pesticide risk assessment and non-target invertebrates: integrating population depletion, population recovery and experimental design. Bull Environ Contam Toxicol 51:523–531.PubMedGoogle Scholar
  234. Thomas B (1995) New directions: report from Europe. In: Ragsdale NN, Kearney PC, Plimmer JR (eds) Eight International Congress of Pesticide Chemistry. Options 2000. American Chemical Society, Washington, DC, pp 382–388.Google Scholar
  235. Thomas CFG, Hol EHA, Everts JW (1990) Modelling the diffusion component of dispersal during recovery of a population of linyphiid spiders from exposure to an insecticide. Funct Ecol 4:357–368.Google Scholar
  236. Thompson AR (1970) Effects of nine insecticides on the numbers and biomass of earthworms in pasture. Bull Environ Contam Toxicol 5:577–586.PubMedGoogle Scholar
  237. Thompson AR (1973) Persistence of biological activity of seven insecticides in soil assayed with Folsomia candida. J Econ Entomol 66:855–857.PubMedGoogle Scholar
  238. Thompson AR, Gore FL (1972) Toxicity of twenty-nine insecticides to Folsomia candida: laboratory studies. J Econ Entomol 65:1255–1260.PubMedGoogle Scholar
  239. Thompson AR, Sans WW (1974) Effects of soil insecticides in southwestern Ontario on non-target invertebrates: earthworms in pasture. Environ Entomol 3:305–308.Google Scholar
  240. Tomlin AD (1975a) The toxicity of insecticides by contact and soil treatment to two species of ground beetles (Coleoptera: Carabidae). Can Entomol 107:529–532.Google Scholar
  241. Tomlin AD (1975b) Toxicity of soil application of insecticides to three species of spring-tails (Collembola) under laboratory conditions. Can Entomol 107:796–774.Google Scholar
  242. Tomlin AD (1977) Toxicity of soil applications of the fungicide benomyl, and two analogues, to three species of Collembola. Can Entomol 109:1619–1620.Google Scholar
  243. Tomlin AD, Gore FL (1974) Effects of six insecticides and a fungicide on the numbers and biomass of earthworms in pasture. Bull Environ Contam Toxicol 12:487–492.PubMedGoogle Scholar
  244. Unal G, Jepson PC (1991) The toxicity of aphicide residues to beneficial invertebrates in cereal crops. Ann Appl Biol 118:493–502.Google Scholar
  245. Van Brummelen TC, Van Gestel CAM, Verweij RA (1996) Long-term toxicity of five polycyclic aromatic hydrocarbons for the terrestrial isopods Oniscus asellus and Porcellio scaber. Environ Toxicol Chem 15:1199–1210.Google Scholar
  246. Van de Bund C (1965) Changes in the soil fauna caused by the application of insecticides. Boll Zool Agrar Bachic (Ser II) 7:185–212.Google Scholar
  247. Van der Hoeven N (1997) How to measure no effect? Part III: Statistical aspects of NOEC, EC, and NEC estimates. Environmetrics 8:255–261.Google Scholar
  248. Van der Valk H, Diakhaté H, Seck A (1996) The toxicity of locust control insecticides to Pimelia senegalensis and Trachyderma hispida (Coleoptera, Tenebrionidae). Locustox Report 96/6. Food and Agricultural Organization of the United Nations, Rome.Google Scholar
  249. Van Gestel CAM (1992a) Validation of earthworm toxicity tests by comparison with field studie: a review on benomyl, carbendazim, carbofuran and carbaryl. Ecotoxicol Environ Sal 23:221–236.Google Scholar
  250. Van Gestel CAM (1992b) The influence of soil characteristics on the toxicity of chemicals for earthworms: a review. In: Greig-Smith PW, Becker H, Edwards PJ, Heimbach F (eds) Ecotoxicology of Earthworms. Intercept, Andover, pp 44–54.Google Scholar
  251. Van Gestel CAM (1997) Scientific basis for extrapolating results from soil ecotoxicity tests to field conditions and the use of bioassays. In: Van Straalen NM, Lake H (eds) Ecological Risk Assessment of Contaminants in Soil. Chapman & Hall, London, pp 25–50.Google Scholar
  252. Van Gestel CAM, Van Straalen NM (1994) Ecotoxicological test systems for terrestrial invertebrates. In: Donker MH, Eijsackers H, Heimbach F (eds) Ecotoxicology of Soil Organisms. Lewis, Boca Raton, pp 205–228.Google Scholar
  253. Van Gestel CAM, Van Dis WA, Van Breemen EM, Sparenburg PM (1989) Development of a standardized reproduction toxicity test with the earthworm species Eisenia fetida andrei using copper, pentachlorophenol, and 2,4-dichloroaniline. Ecotoxicol Environ Saf 18:305–312.PubMedGoogle Scholar
  254. Van Gestel CAM, Dirven-Van Breemen EM, Baerselman R, Emans HJB, Janssen JAM, Postuma R, Van Vliet PJM (1992) Comparison of sublethal and lethal criteria for nine different chemicals in standardized toxicity tests using the earthworm Eisenia andrei. Ecotoxicol Environ Saf 23:206–220.PubMedGoogle Scholar
  255. Van Gestel CAM, Zaal J, Dirven-Van Breemen EM, Baerselman R (1995) Comparison of two test methods for determining the effects of pesticides on earthworm reproduction. Acta Zool Fenn 196:278–283.Google Scholar
  256. Van Leeuwen CJ, Hermens JLM (eds) (1995) Risk Assessment of Chemicals. An Introduction. Kluwer, Dordrecht.Google Scholar
  257. Van Rhee JA (1969) Effects of biocides and their residues on earthworms. Meded Fac Landbouwwet Rijksuniv Gent 34:682–689.Google Scholar
  258. Van Rijn JP, Hennans M, Van Gestel CAM, Van Straalen NM (1994) Estimating ecological risks of pesticides by combined assessment of toxicity and persistence in soil. In: Widianarko B, Vink K, Van Straalen NM (eds) Environmental Toxicology in South East Asia. VU University Press, Amsterdam, pp 289–300.Google Scholar
  259. Van Rijn JP, Van Straalen NM, Willems J (1995) Handboek Bestrijdingsmiddelen. Gebruik & Milieueffecten. VU Uitgeverij, Amsterdam.Google Scholar
  260. Van Straalen NM, Denneman CM (1989) Ecotoxicological evaluation of soil quality criteria. Ecotoxicol Environ Saf 18:241–251.PubMedGoogle Scholar
  261. Van Straalen NM, Kammenga JE (1997) Assessment of ecotoxicity at the population level using demographic parameters. In: Schiiilrmann F, Markert B (eds) Ecotoxicology. Wiley, New York, pp 621–644.Google Scholar
  262. Van Straalen NM, Van Gestel CAM (1993) Soil invertebrates and micro-organisms. In: Calow P (ed) Handbook of Ecotoxicology. Blackwell, Oxford, pp 251–277.Google Scholar
  263. Van Straalen NM, Schobben JHM, Traas TP (1992). The use of ecotoxicological risk assessment in deriving maximum acceptable half-lives of pesticides. Pestic Sci 34: 227–231.Google Scholar
  264. Van Straalen NM, Van Rijn JP, Van Gestel CAM (1995) Ecotoxicological risk assessment of pesticides in soil. In: Ragsdale NN, Kearney PC, Plimmer JR (eds) Eight International Congress of Pesticide Chemistry. Options 2000. American Chemical Society, Washington, DC, pp 418–423.Google Scholar
  265. Van Wensem J, Jagers op Akkerhuis GAJM, Van Straalen NM (1991) Effects of the fungicide triphenyltin hydroxide on soil fauna-mediated litter decomposition. Pestic Sci 32:307–316.Google Scholar
  266. Vegter JJ (1996) Soil protection. In: De Haan FAM, Visser-Reyneveld MI (eds) Soil Pollution and Soil Protection. International Training Centre (PHLO), Wageningen, pp 19–34.Google Scholar
  267. Verhoef HA, Brussaard L (1990) Decomposition and nitrogen mineralization in natural and agro-ecosystems: the contribution of soil animals. Biogeochemistry (Dordr) 11: 175–211.Google Scholar
  268. Vickerman GP (1992) The effects of different pesticide regimes on the invertebrate fauna of winter wheat. In: Greig-Smith PW, Frampton GK, Hardy AR (eds) Pesticides, Cereal Fanning and the Environment. The Boxworth Project. HMSO, London, pp 82–109.Google Scholar
  269. Vickerman GP, Sunderland KD (1977) Some effects of dimethoate on arthropods in winter wheat. J Appl Ecol 14:767–777.Google Scholar
  270. Vickerman GP, Coombes DS, Turner G, Mead-Briggs MA, Edwards J (1987) The effects of pirimicarb, dimethoate and deltamethrin on Carabidae and Staphylinidae in winter wheat. Meded Fac Landbouwwet Rijksuniv Gent 52:213–223.Google Scholar
  271. Vighi M (1992) Ecotoxicological contribution for the economic evaluation of water pollution control strategies. Water Sci Technol 25:457–464.Google Scholar
  272. Vink K, Dewi L, Bedaux J, Tompot A, Hermans M, Van Straalen NM (1995) The importance of the exposure route when testing the toxicity of pesticides to saprotrophic arthropods. Environ Toxicol Chem 14:1225–1232.Google Scholar
  273. Viswanathan R, Ray S, Scheunert I, Korte F (1988) Investigations on accumulation and biotransformation by earthworms of lindane occurring as soil contaminant. In: Abbou R (ed) Hazardous Waste: Detection, Control, Treatment. Elsevier, Amsterdam, pp 759–765.Google Scholar
  274. Vonk JW, Adema DMM, Barug D (1986) Comparison of the effects of several chemicals on microorganisms, higher plants and earthworms. In: Assink JW, Van den Brink JW (eds) Contaminated Soil. Martinus Nijhoff, Dordrecht, pp 191–201.Google Scholar
  275. Voronova LD (1968) The effect of some pesticides on the soil invertebrate fauna in the South Taiga Zone in the Penn Region (USSR). Pedobiologia 8:507–525.Google Scholar
  276. Wagner C, Lake H (1991) Estimation of ecotoxicological protection levels from NOEC toxicity data. Water Res 25:1237–1242.Google Scholar
  277. Wheatley GA, Hardman JA (1968) Organochlorine insecticide residues in earthworms from arable soils. J Sci Food Agric 19:219–225.Google Scholar
  278. Widianarko B, Van Straalen NM (1996) Toxicokinetics-based survival analysis in bioassays using nonpersistent chemicals. Environ Toxicol Chem 15:402–406.Google Scholar
  279. Wiens JA (1996) Coping with variability in environmental impact assessment. In: Baird DJ, Maltby L, Greig-Smith PW, Douben PT (eds) Ecotoxicology: Ecological Dimensions. Chapman & Hall, London, pp 55–70.Google Scholar
  280. Wiles JA, Frampton GK (1996) A field bioassay approach to assess the toxicity of insecticide residues on soil to Collembola. Pestic Sci 47:273–285.Google Scholar
  281. Wiles JA, Jepson PC (1992) The susceptibility of a cereal aphid pest and its natural enemies to deltamethrin. Pestic Sci 36:263–272.Google Scholar
  282. Winkelman DA, Klaine SJ (1991a) Degradation and bound residue formation of atrazine in a Western Tennessee soil. Environ Toxicol Chem 10:335–345.Google Scholar
  283. Winkelman DA, Klaine SJ (1991b) Degradation and bound residue formation of four atrazine metabolites, deethylatrazine, deisopropylatrazine, dealkylatrazine and hydroxyatrazine, in a Western Tennessee soil. Environ Toxicol Chem 10:347–354.Google Scholar
  284. Worthing CR, Hance R (eds) (1991) The Pesticide Manual. British Crop Protection Council, Farnham, Surrey.Google Scholar
  285. Wright MA (1977) Effects of benomyl and some other systemic fungicides on earthworms. Ann Appl Biol 87:520–524.Google Scholar
  286. Yadav TD (1980) Toxicity of DDT and lindane against thirteen species of stored product insects. Indian J Entomol 42:671–674.Google Scholar
  287. Zoran MJ, Heppner TJ, Drewes CD (1985) Teratogenic effects of the fungicide benomyl on posterior segmental regeneration in the earthworm, Eisenia fetida. Pestic Sci 17: 641–652.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • N. M. van Straalen
    • 1
  • J. P. van Rijn
    • 1
  1. 1.Department of Ecology and EcotoxicologyVrije UniversiteitAmsterdamThe Netherlands

Personalised recommendations