Skip to main content

Ecotoxicological Risk Assessment of Soil Fauna Recovery from Pesticide Application

  • Chapter
Reviews of Environmental Contamination and Toxicology

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 154))

Abstract

Ecotoxicological risk assessment provides a measure for adverse ecological effects of chemicals as a function of their concentration in the environment. The risk is commonly expressed as the ratio between the predicted environmental concentration (PEC) and the predicted no-effect concentration (PNEC) (Norton et al. 1992; Van Leeuwen and Hermens 1995). Another approach is to use statistical distributions for PECs and PNECs and to derive maximum acceptable concentrations from the risk associated with the probability of PEC being greater than PNEC. This approach has gone under the name of “distribution-based extrapolation methodology” (Aldenberg and Slob 1993; Forbes and Forbes 1993; Kooijman 1987; Okkerman et al. 1993; Smith and Cairns 1993; Van Straalen and Denneman 1989; Wagner and Løkke 1991.)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abel C, Heimbach U (1992) Testing effects of pesticides on Poecilus cupreus (Coleoptera, Carabidea) in a standardised semi-field test. IOBC/WPRS Bull XV/3: 171–175.

    Google Scholar 

  • Achik J, Schiavon M, Houpert G (1989) Persistence and biological activity of four insecticides in two soil types under field and laboratory conditions. J Econ Entomol 82: 1572–1575.

    CAS  Google Scholar 

  • Aebischer NJ (1990) Assessing pesticide effects on non-target invertebrates using longterm monitoring and time-series modelling. Funct Ecol 4:369–373.

    Google Scholar 

  • Ahmad N, Walgenbach DD, Sutter GR (1979) Degradation rates of technical carbofuran and a granular formulation in four soils with known insecticide use history. Bull Environ Contam Toxicol 23:572–574.

    CAS  PubMed  Google Scholar 

  • Al-Assiuty AIM, Khalil MA (1996) Effects of the herbicide atrazine on Entomobrya musatica (Collembola) in field and laboratory experiments. Appl Soil Ecol 4:139–146.

    Google Scholar 

  • Aldenberg T, Slob W (1993) Confidence limits for hazardous concentrations based on logistically distributed NOEC toxicity data. Ecotoxicol Environ Saf 25:48–63.

    CAS  PubMed  Google Scholar 

  • Anton FAE, Laborda P, Ramos E (1993) Carbofuran acute toxicity to Eisenia foetida Savigny earthworms. Bull Environ Contam Toxicol 50: 407–412.

    CAS  PubMed  Google Scholar 

  • Asteraki EJ, Hanks CB, Clements RO (1992) The impact of two insecticides on predatory ground beetles (Carabidae) in newly-sown grass. Ann Appl Biol 120:25–39.

    CAS  Google Scholar 

  • Badejo MA, Van Straalen NM (1992) Effects of atrazine on growth and reproduction of Orchesella cincta (Collembola). Pedobiologia 36:221–230.

    Google Scholar 

  • Ball JC (1982) Impact of fungicides and miticides on predatory and phytophagous mites associated with pecan foliage. Environ Entomol 11:1001–1004.

    Google Scholar 

  • Baring MH (1957) Die Milbenfauna eines Ackerbodens and ihre Beeinflussung durch Pflanzenschutzmittel. Z Angew Entomol 41:15–51.

    Google Scholar 

  • Barnes RD, Bull AT, Poller RC (1973) Studies on the persistence of the organotin fungicide fentin acetate (triphenyltin acetate) in the soil and on surfaces exposed to light. Pestic Sci 4:305–317.

    CAS  Google Scholar 

  • Barrett KL, Grandy N, Harrison EG, Hassan S, Oomen P (eds) (1994) Guidance document on regulatory testing procedures for pesticides with non-target arthropods. SETAC-Europe, Brussels.

    Google Scholar 

  • Baveco JM, De Roos AM (1996) Assessing the impact of pesticides on lumbricid populations: an individual-based modelling approach. J Appl Ecol 33:1451–1468.

    CAS  Google Scholar 

  • Bayley M (1995) Prolonged effects of the insecticide dimethoate on locomotor behaviour in the woodlouse, Porcellio scaber Ltr. (Isopoda). Ecotoxicology 4:79–90.

    CAS  PubMed  Google Scholar 

  • Bayley M, Baatrup E (1996) Pesticide uptake and locomotor behaviour in the woodlouse: an experimental study employing video tracking and 1°C-labelling. Ecotoxicology 5:35–45.

    CAS  PubMed  Google Scholar 

  • Bayoumi OC (1987) Toxic effect of some insecticides and insecticide mixtures against the confused flour beetle Tribolium confusum Duv. Meded Fac Landbouwwet Rijksuniv Gent 52:519–523.

    CAS  Google Scholar 

  • Bedaux JJM, Kooijman SALM (1994) Statistical analysis of bioassays, based on hazard modelling. Environ Ecol Stat 1:303–314.

    Google Scholar 

  • Bellows TS, Morse JG, Gaston LK (1992) Residual toxicity of pesticides used for control of lepidopteran insects in citrus to the predaceous mite Eusefus stipulatus AthiasHenriot (Acarina, Phytoseiidae). J Appl Entomol 113:493–501.

    Google Scholar 

  • Blumhorst MR, Weber JB, Swain LR (1991). Efficacy of selected herbicides as influenced by soil properties. J Agric Food Chem 4:297–283.

    Google Scholar 

  • Bock R (1981) Triphenyltin compounds and their degradation products. Residue Rev 79: 1–270.

    CAS  PubMed  Google Scholar 

  • Boström U, Lofs-Holmin A (1982) Testing side effects of pesticides on soil fauna—a critical literature review. Report 12, Institutionen für Ekologi och Miljövard. Swedish University of Agricultural Sciences, Uppsala.

    Google Scholar 

  • Bouwman H, Reinecke Ai (1987) Effects of carbofuran on the earthworm, Eisenia fetida, using a defined medium. Bull Environ Contam Toxicol 38:171–178.

    CAS  PubMed  Google Scholar 

  • Brauch HJ (1993) Pesticides in the river Rhine. Acta Hydrochim Hydrobiol 21:137–144.

    CAS  Google Scholar 

  • Broadbent AB, Tomlin AD (1982) Comparison of two methods for assessing the effects of carbofuran on soil animal decomposers in cornfields. Environ Entomol 11:1036–1042.

    Google Scholar 

  • Brown RA (1988) Predicting the effects of pesticides on terrestrial invertebrates. Aspects Appl Biol 17:275–278.

    Google Scholar 

  • Brunninger B, Viswanathan R, Beese F (1994) Terbuthylazine and carbofuran effects on growth and reproduction within three generations of Eisenia andrei (Oligochaeta). Biol Fertil Soils 18:83–88.

    CAS  Google Scholar 

  • Brussaard L (1998) Soil zoology between the study of soil animals and understanding ecosystem functioning. Appl Soil Ecol (in press).

    Google Scholar 

  • Brust GE (1990) Direct and indirect effects bf four herbicides on activity of carabid beetles (Coleoptera: Carabidae). Pestic Sci 30:309–320.

    CAS  Google Scholar 

  • Burn AJ (1992). Interactions between cereal pests and their predators and parasites. In: Greig-Smith PW, Frampton GK, Hardy AR (eds) Pesticides, Cereal Farming and the Environment. The Boxworth Project. HMSO, London, pp 110–131.

    Google Scholar 

  • Byrdy S, Ejmocki Z, Eckstein Z (1965) Organotin compounds as insect chemosterilants. Evaluation of the activity of some triphenyltin derivatives on the Colorado potato beetle (Leptinotarsa decemlineata Say) and house fly (Musca domestica L.). Bull Acad Pol Sci Sér Sci Chim 13:683–686.

    Google Scholar 

  • Calamari D, Tremeloda P, Di Guardo A, Vighi M (1994) Chlorinated hydrocarbons in pine needles in Europe: fingerprint for the past and recent use. Environ Sci Technol 28:429–434.

    CAS  PubMed  Google Scholar 

  • Cambell WV, Mount DA, Heming BS (1971) Influence of organic matter content of soil on insecticidal control. J Econ Entomol 61:41–49.

    Google Scholar 

  • Camper ND, Fleming MM, Skipper HD (1987) Biodegradation of carbofuran in pretreated and non-pretreated soils. Bull Environ Contam Toxicol 39:571–578.

    CAS  PubMed  Google Scholar 

  • Caselcy JC, Eno CF (1966) Survival and reproduction of two species of earthworm and a rotifer following herbicide treatments. Soil Sci Soc Am Proc 30:346–350.

    Google Scholar 

  • Cathey B (1982) Comparative toxicities of five insecticides to the earthworm Lumbricus terrestris. Agric Environ 7:73–81.

    CAS  Google Scholar 

  • Chapman RA, Cole CM (1982) Observations on the influence of water and soil pH on the persistence of insecticides. J Environ Sci Health B17:487–504.

    CAS  Google Scholar 

  • Çilgi T, Frampton GK (1994) Arthropod populations under current and reduced-input pesticide regimes: results from the first four treatment years of the MAFF “SCARAB” project. Brighton Crop Protection Conference—Pests and Diseases 1994:653–660.

    Google Scholar 

  • Çilgi T, Wratten SD, Frampton GK, Holland TM (1993) The long term effects of pesticides on beneficial invertebrates—lessons from the Boxworth project. Pestic Outlook 4:30–35.

    Google Scholar 

  • Conrady D (1986) Ökologische Untersuchungen über die Wirkung von Umweltchemikalien auf die Tiergemeinschaft eines Grünlandes. Pedobiologia 29:273–284.

    CAS  Google Scholar 

  • Croft BA (1990) Arthropod Biological Control Agents and Pesticides. Wiley, New York. Croll BT (1990) Pesticides in surface and underground waters. Pestic Sci 30:309–320.

    Google Scholar 

  • Crommentuijn T, Stab JA, Doornekamp A, Estoppey O, Van Gestel CAM (1995) Comparative ecotoxicity of cadmium, chlorpyrifos and triphenyltin hydroxide for four clones of the parthenogenetic collembolan Folsomia candida in an artificial soil. Funct Ecol 9:734–742.

    Google Scholar 

  • Crommentuijn T, Doodeman CJAM, Doornekamp A, Van Gestel CAM (1997) Life-table study with the springtail Folsomia candida (Willem) exposed to cadmium, chlorpyrifos and triphenyltin hydroxide. In: Van Straalen NM, Lake H (eds) Ecological Risk Assessment of Contaminants in Soil. Chapman & Hall, London, pp 275–291.

    Google Scholar 

  • Dalby PR, Baker GH, Smith SE (1995) Glyphosate, 2,4-DB and dimethoate: effects on earthworm survival and growth. Soil Biol Biochem 27:1661–1662.

    CAS  Google Scholar 

  • De Clercq R, Pietraszko R (1985) On the influence of pesticides on Carabidae and Staphylinidae in winter wheat. In: Comportement et Effets Secondaires des Pesticides dans le Sol. INRA, Versailles, pp 273–278.

    Google Scholar 

  • De Snoo GR, Canters KJ, De Jong FMW, Cuperus R (1994) Integral hazard assessment of side effects of pesticides in the Netherlands—a proposal. Environ Toxicol Chem 13:1331–1340.

    Google Scholar 

  • Demon A, Eijsackers H (1985) The effects of lindane and azinphosmethyl on survival time of soil animals, under extreme or fluctuating temperature and moisture conditions. Z Angew Entomol 100:504–510.

    CAS  Google Scholar 

  • Di Toro OM, Zarba CS, Hansen DJ, Berry WJ, Swartz RC, Cowan CE, Pavlou SP, Allen HE, Thomas NA, Paquin PR (1991) Technical basis for establishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning. Environ Toxicol Chem 10:1541–1583.

    Google Scholar 

  • Duffield SJ, Aebischer NJ (1994) The effect of spatial scale of treatment with dimethoate on invertebrate population recovery in winter wheat. J Appl Ecol 31:263–281.

    CAS  Google Scholar 

  • Duffield SJ, Jepson PC, Wrattten SD, Sotherton NW (1996) Spatial changes in invertebrate predation rate in winter wheat following treatment with dimethoate. Entomol Exp Appl 78:9–17.

    CAS  Google Scholar 

  • Dzantor EK, Felsot AS (1990) Soil differences in the biodegradation of carbofuran and trimethacarb following pretreatment with these insecticides. Bull Environ Contain Toxicol 45:531–537.

    CAS  Google Scholar 

  • Edwards CA (1966) Insecticide residues in soil. Residue Rev 13:83–132.

    CAS  Google Scholar 

  • Edwards CA (1992) Testing the effects of chemicals on earthworms: the advantages and limitations of field tests. In: Greig-Smith PW, Becker H, Edwards PJ, Heimbach F (eds) Ecotoxicology of Earthworms. Intercept, Andover, pp 75–84.

    Google Scholar 

  • Edwards CA (1995) The influence of plant protection on soil communities. In: Edwards CA, Abe T, Striganova BR (eds) Structure and Function of Soil Communities. Kyoto University Press, Kyoto, pp 93–110.

    Google Scholar 

  • Edwards CA, Bohlen PJ (1992) The effects of toxic chemicals on earthworms. Rev Environ Contain Toxicol 125:23–99.

    CAS  Google Scholar 

  • Edwards CA, Stafford CA (1979) Interactions between herbicides and the soil fauna. Ann Appl Biol 91:132–137.

    CAS  Google Scholar 

  • Edwards CA, Thompson AR (1973) Pesticides and the soil fauna. Residue Rev 45:1–79.

    CAS  PubMed  Google Scholar 

  • Edwards CA, Thompson AR (1975) Some effects of insecticides on predatory beetles. Ann Appl Biol 80:132–135.

    Google Scholar 

  • Edwards PJ, Brown SM (1982) Use of grassland plots to study the effect of pesticides on earthworms. Pedobiologia 24:145–150.

    CAS  Google Scholar 

  • Edwards Pi, Coulson JM (1992) Choice of earthworm species for laboratory tests. In: Greig-Smith PW, Becker H, Edwards PJ, Heimbach F (eds) Ecotoxicology of Earthworms. Intercept, Andover, pp 36–43.

    Google Scholar 

  • Eijsackers H (1994) Ecotoxicology of soil organisms: seeking the way through a pitch-dark labyrinth. In: Donker MH, Eijsackers H, Heimbach F (eds) Ecotoxicology of Soil Organisms. Lewis, Boca Raton, pp 3–32.

    Google Scholar 

  • Eijsackers H, Ltkke H (1996) Soil ecotoxicological risk assessment. Ecosyst Health 2: 259–270.

    Google Scholar 

  • Eijsackers H, Van de Bund CF (1980) Effects on soil fauna. In: Hance RJ (ed) Interactions Between Herbicides and the Soil. Academic Press, London, pp 255–305.

    Google Scholar 

  • El-Wakil HB, Radwan MA (1991) Biochemical studies on the terrestrial snail Eubania vermiculata (Müller) treated with some pesticides. J Environ Sci Health 26:479–489.

    CAS  Google Scholar 

  • Esser HO, Dupuis G, Ebert E, Marco GJ, Vogel C (1975) s-Triazines. In: Kearney PC, Kaufman DD (eds) Herbicides. Chemistry, Degradation and Mode of Action, Vol. 1. Dekker, New York, pp 129–208.

    Google Scholar 

  • Fâbiân M, Petersen H (1994) Short-term effects of the insecticide dimethoate on activity and spatial distribution of a soil-inhabiting collembolan Folsomia fimetaria Linné (Collembola: Isotomidae). Pedobiologia 38:289–302.

    Google Scholar 

  • Fayolle L (1979) Consequences de l’apport de contaminants sur les lombriciennes. III. Essais de laboratoire. Doc Pedozool 1:34–65.

    CAS  Google Scholar 

  • Felding G (1991) Leaching of atrazine into ground water. Pestic Sci 35:39–43.

    Google Scholar 

  • Fent K (1996) Ecotoxicology of organotin compounds. Crit Rev Toxicol 26:1–117.

    CAS  PubMed  Google Scholar 

  • Filser J, Fromm H, Nagel RF, Winter K (1995) Effects of previous intensive agricultural management on microorganisms and the biodiversity of soil fauna. Plant Soil 170:123–129.

    CAS  Google Scholar 

  • Fischer E, Farkas S, Hornung E, Past T (1997) Sublethal effects of an organophosphorous insecticide, dimethoate, on the isopod Porcellio scaber Latr. Comp Biochem Physiol 116C:161–166.

    CAS  Google Scholar 

  • Fischer L, Chambon JP (1987) Faunistical inventory of cereal arthropods after flowering and incidence of insecticide treatments with deltamethrin, dimethoate and phosalone on the epigeal fauna. Meded Fac Landbouwwet Rijksuniv Gent 52:201–211.

    CAS  Google Scholar 

  • Fisher SW (1984) A comparison of standardized methods for measuring the biological activity of pesticides to the earthworm, Lumbricus terrestris. Ecotoxicol Environ Saf 8:564–571.

    CAS  PubMed  Google Scholar 

  • Floate K, Elliot RH, Doane JF, Gillott C (1989) Field bioassay to evaluate contact and residual toxicities of insecticides to carabid beetles (Coleoptera: Carabidae) J Econ Entomol 82:1543–1547.

    CAS  PubMed  Google Scholar 

  • Forbes TL, Forbes VE (1993) A critique of the use of distribution-based extrapolation models in ecotoxicology. Funct Ecol 7:249–254.

    Google Scholar 

  • Fox CJS (1964) The effects of five herbicides on the numbers of certain invertebrate animals in grassland soil. Can J Plant Sci 44:405–409.

    CAS  Google Scholar 

  • Frampton GK (1988) The effects of some commonly-used foliar fungicides on Collembola in winter barley: laboratory and field studies. Ann Appl Biol 113:1–14.

    CAS  Google Scholar 

  • Frampton GK (1994) Sampling to detect effects of pesticides on epigeal Collembola (springtails). Aspects Appl Biol 37:121–130.

    Google Scholar 

  • Frampton GK, Çiïgi T (1992) Long-term effects of pesticides on arthropods in UK arable crops: preliminary results from the “SCARAB” project. Aspects Appl Biol 31:69–76.

    Google Scholar 

  • Frampton GK, Langton SD, Greig-Smith PW, Hardy ÄR (1992) Changes in the soil fauna at Boxworth. In: Greig-Smith PW, Frampton GK, Hardy AR (eds) Pesticides, Cereal Farming and the Environment. The Boxworth Project. HMSO, London, pp 132–143.

    Google Scholar 

  • Franz JM (1974) Die Prüfung von Nebenwirkungen der Pflanzenschutzmittel auf Nutzarthropoden im Laboratorium—ein Sammelbericht. Z Pflanzenkr Pflanzenschutz 81: 141–174.

    Google Scholar 

  • Fratello B, Bertolani R, Sabatini MA, Mola L, Rassu MA (1985) Effects of atrazine on soil microarthropods in experimental maize fields. Pedobiologia 28:161–168.

    Google Scholar 

  • Frey F (1976) Untersuchungen über die Wirkungen von im Obstbau verwendeten Herbizide auf den Testnematoden Acrobeloides buetschlii (de Man, 1884) Steiner and Buhrer, 1933. Z Pflanzenkr Pflanzenschutz 88:434–441.

    Google Scholar 

  • Getzin LW(1973) Persistence and degradation of carbofuran in soil. Environ Entomol 2: 461–467.

    CAS  Google Scholar 

  • Getzin LW (1985) Chemical control of the springtail Onychiurus pseudarmatus (Collembola: Onychiuridae). J Econ Entomol 78:1337–1340.

    CAS  Google Scholar 

  • Ghabbour SI, Imam M (1967) The effect of five herbicides on three Oligochaete species. Rev Ecol Biol Sol 4:119–122.

    Google Scholar 

  • Gholson LE, Beegle CC, Best RL, Owens JC (1978) Effects of several commonly used insecticides on cornfield carabids in Iowa. J Econ Entomol 71:416–418.

    Google Scholar 

  • Giardina MC, Giardi MT, Filacchioni G (1982) Atrazine metabolism by Nocardia: elucidation of initial pathway and synthesis of potential metabolites. Agric Biol Chem 46: 1439–1445.

    CAS  Google Scholar 

  • Gibbs MH, Wicker LF, Stewart AI (1996) A method for assessing sublethal effects of contaminants in soils to the earthworm, Eisenia foetida. Environ Toxicol Chem 15: 360–368.

    CAS  Google Scholar 

  • Gilman AP, Vardanis A (1974) Carbofuran. Comparative toxicity and metabolism in the worms Lumbricus terrestris L. and Eisenia foetida S. J Agric Food Chem 22: 625–628.

    CAS  PubMed  Google Scholar 

  • Goodman ED (1982) Modeling effects of pesticides on populations of soil/litter invertebrates in an orchard ecosystem. Environ Toxicol Chem 1:45–60.

    CAS  Google Scholar 

  • Graf von Baudissin F (1952) Die Wirkung von Pflanzenschutzmitteln auf Collembolen and Milben in verschiedenen Böden. Zool Jahrb Abt Syst Oekol Geogr Tiere 81:47–90.

    Google Scholar 

  • Grégoire-Wibo C (1983a) Incidences écologiques des traitements phytosanitaires en culture de betterave sucrière, essais expérimentaux en champ. I. Les Collemboles épigés. Pedobiologia 25:37–48.

    Google Scholar 

  • Grégoire-Wiby C (1983b) Incidences écologiques des traitements phytosanitaires en culture de betterave sucrière. II. Acariens, Polydesmes, Staphylins, Cryptophagides et Carabides. Pedobiologia 25:93–108

    Google Scholar 

  • Gregory DA, Johnson DL, Thompson BH (1994) The toxicity of bran baits, formulated with carbaryl, chlorpyrifos and dimethoate, on yellow mealworms (Tenebrio molitor L.). J Agric Entomol 11:85–94.

    CAS  Google Scholar 

  • Greig-Smith PW (1992) A European perspective on ecological risk assessment, illustrated by pesticide registration procedures in the United Kingdom. Environ Toxicol Chem 11:1673–1689.

    CAS  Google Scholar 

  • Greig-Smith PW, Frampton GK, Hardy AR (eds) (1992) Pesticides, Cereal Farming and the Environment. The Boxworth Project. HMSO, London.

    Google Scholar 

  • Hagens M, Westheide W (1987) Subletale Schädigungen bei Enchytreus minutus (Oligochaeta, Annelida) durch das Insektizid Parathion: Veränderungen in der Ultrastruktur von Chloragog-und Darmzellen in Abhängigkeit von Belastüngsdauer. Verh Ges Ökol (Gießen 1986) 16:423–426.

    Google Scholar 

  • Hagley EAC, Pree DJ, Holliday NJ (1980) Toxicity of insecticides to some orchard carabids (Coleoptera: Carabidae). Can Entomol 112:457–462.

    CAS  Google Scholar 

  • Halley IM, Thomas CFG, Jepson PC (1996) A model for the spatial dynamics of linyphiid spiders in farmland. J Appl Ecol 33:471–492.

    Google Scholar 

  • Hamers T, Notenboom J, Eijsackers HJP (1996) Validation of laboratory toxicity data on pesticides for the field situation. Report 719102046. National Institute of Public Health and the Environment. RIVM, Bilthoven.

    Google Scholar 

  • Hague A, Ebing W (1983) Toxicity determination of pesticides to earthworms in the soil substrate. Z Pflanzenkr Pflanenschutz 90:395–408.

    Google Scholar 

  • Hara AH, Kaya HK (1983) Toxicity of selected organophosphate and carbamate pesticides to infective juveniles of the entomogenous nematode Neoaplectana carpocapsae (Rhabditida: Steinernematidae). Environ Entomol 12:496–501.

    Google Scholar 

  • Harris CR (1966) Influence of soil type on the activity of insecticides in soil. J Econ Entomol 59:1221–1225.

    CAS  Google Scholar 

  • Harris CR (1967) Further studies on the influence of soil moisture on the toxicity of insecticides in soil. J Econ Entomol 60:41–44.

    CAS  Google Scholar 

  • Harris CR (1969) Insecticide pollution and soil organisms. Proc Entomol Soc Ont 100: 14–29.

    Google Scholar 

  • Harris CR, Mazurek Lll (1964) Comparison of the toxicity to insects of certain insecticides applied by contact and in the soil. J Econ Entomol 57:689–702.

    Google Scholar 

  • Harris CR, Chapman RA, Tolman JH, Moy P, Henning K, Harris C (1988) A comparison of the persistence in a clay loam of single and repeated annual applications of seven granular insecticides used for corn rootworm control. J Environ Sci Health B23: 1–32.

    CAS  Google Scholar 

  • Harvey J Jr, Pease HL (1973) Decomposition of methomyl in soil. J Agric Food Chem 21:784–786.

    PubMed  Google Scholar 

  • Hassan SA (1985) Standard methods to test the side-effects of pesticides on natural enemies of insects and mites developed by the IOBC/WPRS working group “Pesticides and Beneficial Organisms.” OEPP/EPPO Bull 15:214–255.

    Google Scholar 

  • Heimbach F (1984) Correlations between three methods for determining the toxicity of chemicals to earthworms. Pestic Sci 15:605–611.

    CAS  Google Scholar 

  • Heimbach F (1985) Comparison of laboratory methodes, using Eisenia foetida and Lumbricus terrestris for the assessment of the hazard of chemicals to earthworms. Z Pflanzenkr Pflanzenschutz 92:186–193.

    CAS  Google Scholar 

  • Heimbach F (1992a) Effects of pesticides on earthworm populations: comparison of results from laboratory and field tests. In: Greig-Smith PW, Becker H, Edwards PJ, Heimbach F (eds) Ecotoxicology of Earthworms. Intercept, Andover, pp 100–106.

    Google Scholar 

  • Heimbach F (1992b) Correlation between data from laboratory and field tests for investi-gating the toxicity of pesticides to earthworms. Soil Biol Biochem 24:1749–1753.

    CAS  Google Scholar 

  • Heimbach U (1991) Effects of some insecticides on aphids and beneficial arthropods in winter wheat. IOBCIWPRS Bull 14:131–139.

    Google Scholar 

  • Heimbach U, Abel C, Siebers J, Wehling A (1992) Influence of different soils on the effects of pesticides on carabids and spiders. Aspects Appl Biol 31:49–59.

    Google Scholar 

  • Heimbach U, Leonard P, Khoshab A, Miyakawa R, Abel C (1994) Assessment of pesticide safety to the carabid beetle, Poecilus cupreus, using two different semifield enclosures. In: Donker MH, Eijsackers H, Heimbach F (eds) Ecotoxicology of Soil Organisms. Lewis, Boca Raton, pp 273–285.

    Google Scholar 

  • Heungens A (1970) L’influence de quelques pesticides sur la faune du sol dans la culture de l’azalée. Meded Fac Landbouwwet Rijksuniv Gent 35:717–729.

    CAS  Google Scholar 

  • Heungens A, Van Daele E (1979) Toxicity of insecticides and nematicides on soil mites and Collembola in pine litter substrate. Meded Fac Landbouwwet Rijksuniv Gent 44: 379–393.

    CAS  Google Scholar 

  • Hoekstra JA, Van Ewijk PH (1993) Alternatives for the no-observed-effect level. Environ Toxicol Chem 12:187–194.

    Google Scholar 

  • Hoekstra JA, Vaal MA, Notenboom J, Slooff W (1994) Variation in the sensitivity of aquatic species to toxicants. Bull Environ Contam Toxicol 53:98–105.

    CAS  PubMed  Google Scholar 

  • Howard PH (1991) Handbook of Environmental Fate and Exposure Data for Organic Chemicals, Vol. III, Pesticides. Lewis, Chelsea, MI.

    Google Scholar 

  • Hoy JB (1980) Ecological impact of lindane on a pine plantation soil microarthropod community. Environ Entomol 9:164–174.

    CAS  Google Scholar 

  • IOBC (1988) Guidelines for testing the effects of pesticides on beneficials: short description of test methods. International Organization for Biological and Integrated Control of Noxious Animals and Plants, SROP/WPRS Bull 11:1–143.

    Google Scholar 

  • ISO (1994) ISO/Draft soil quality—effects of soil pollutants on Collembola. International Standardization Organization, Geneva.

    Google Scholar 

  • Jagers op Akkerhuis GAJM, Hamers THM (1992) Substrate-dependent bioavailability of deltamethrin for the epigeal spider Oedothorax apicatus (Blackwall) (Aranaea, Erigonidae). Pestic Sci 36:59–68.

    CAS  Google Scholar 

  • Jepson PC (1988) Ecological characteristics and the susceptibility of nontarget invertebrates to long term pesticide side effects. BCPC Monogr 40:191–200.

    Google Scholar 

  • Jepson PC (1989) The temporal and spatial dynamics of pesticide side-effects on non-target invertebrates. In: Jepson PC (ed) Pesticides and Non-target Invertebrates. Intercept, Wimborne, pp 95–127.

    Google Scholar 

  • Jepson PC (1997) Scale dependency in the ecological risks posed by pollutants. In: Van Straalen NM, Lpkke H (eds) Ecological Risk Assessment of Contaminants in Soil. Chapman & Hall, London, pp 175–189.

    Google Scholar 

  • Jepson PC, Thacker JRM (1990) Analysis of the spatial component of pesticide side-effects on non-target invertebrate populations and its relevance to hazard analysis. Funct Ecol 4:349–355.

    Google Scholar 

  • Jepson PC, Sherratt TN (1991) Predicting the long-term impact of pesticides on predatory invertebrates. In: Proceedings Brighton Crop Protection Council Conference 1991. BCPC, Thornton Heath, pp 911–919.

    Google Scholar 

  • Jepson PC, Sherratt TN (1996) The dimensions of space and time in the assessment of ecotoxicological risks. In: Baird DJ, Maltby L, Greig-Smith PW, Douben PET (eds) Ecotoxicoÿogy: Ecological Dimensions. Chapman & Hall, London, pp 43–54.

    Google Scholar 

  • Jepson PC, Chaudhry AG, Salt DW, Ford MG, Efe E, Chowdhury ABMNU (1990) A reductionist approach towards short-term hazard analysis for terrestrial invertebrates exposed to pesticides. Funct Ecol 4:339–347.

    Google Scholar 

  • Joy VC, Chakravorty PP (1991) Impact of insecticides on nontarget microarthropod fauna in agricultural soil. Ecotoxicol Environ Saf 22:8–16.

    CAS  PubMed  Google Scholar 

  • Kahn SU (1980) Pesticides in the Soil Environment. Elsevier, Amsterdam.

    Google Scholar 

  • Kammenga JE, Van Koert PHG, Riksen JAG, Korthals GW, Bakker J (1996) A toxicity test in artificial soil based on the life-history strategy of the nematode Plectus acuminatus. Environ Toxicol Chem 15:722–727.

    CAS  Google Scholar 

  • Karnak RE, Hamelink JL (1982) A standardized method for determining the acute toxicity of chemicals to earthworms. Ecotoxicol Environ Saf 6:216–222.

    CAS  Google Scholar 

  • Kathpal TS, Yadav PR, Kushwana KS (1981) Residues of some organochlorine insecticides in soils under different agro-climatic conditions of India. Indian J Entomol 43:420–427.

    CAS  Google Scholar 

  • Kenaga EE (1965). Triphenyl tin compounds as insect reproduction inhibitors. J Econ Entomol 58:4–8.

    CAS  Google Scholar 

  • Kjar C, Jepson PC (1995) The toxic effects of direct pesticide exposure for a nontarget weed-dwelling chrysomelid beetle (Gastrophysa polygoni) in cereals. Environ Toxicol Chem 14:993–999.

    Google Scholar 

  • Kolbe A, Bernasch A, Stock M, Schütte HR, Dedek W (1991) Persistence of the insecticide dimethoate in three different soils under laboratory conditions. Bull Environ Contam Toxicol 46:492–498.

    CAS  PubMed  Google Scholar 

  • Kooijman SALM (1987) A safety factor for LCn values allowing for differences in sensitivity among species. Water Res 21:269–276.

    CAS  Google Scholar 

  • Kooijman SALM (1996) An alternative for NOEC exists, but the standard model has to be abandoned first. Oikos 75:310–316.

    Google Scholar 

  • Kooijman SALM, Bedaux JJM (1996) The Analysis of Aquatic Toxicity Data. VU University Press, Amsterdam.

    Google Scholar 

  • Krogh PH (1991) Perturbation of the soil microarthropod community with the pesticides benomyl and isofenphos. I. Population changes. Pedobiologia 35:71–88.

    CAS  Google Scholar 

  • Krogh PH (1994) Microarthropods as bioindicators. Ph.D. thesis, University of Arhus and National Environmental Research Institute, Silkeborg.

    Google Scholar 

  • Krogh PH (1995) Does a heterogenous distribution of food or pesticide affect the outcome of toxicity tests with Collembola? Ecotoxicol Environ Saf 30:158–163.

    CAS  PubMed  Google Scholar 

  • Kula C (1994a) A prolonged laboratory test on sublethal effects of pesticides on Eisenia fetida. In: Donker MH, Eijsackers H, Heimbach F (eds) Ecotoxicology of Soil Organisms. Lewis, Boca Raton, pp 257–262.

    Google Scholar 

  • Kula H (1994b) Species-specific sensitivity differences of earthworms to pesticides in laboratory tests. In: Donker MH, Eijsackers H, Heimbach F (eds) Ecotoxicology of Soil Organisms. Lewis, Boca Raton, pp 241–250.

    Google Scholar 

  • Kula H, Kokta C (1992) Side effects of selected pesticides on earthworms under laboratory and field conditions. Soil Biol Biochem 24:1711–1714.

    CAS  Google Scholar 

  • Lanno RP, Stephenson GL, Wren CD (1997) Applications of toxicity curves in assessing the toxicity of diazinon and pentachlorophenol to Lumbricus terrestris in natural soils. Soil Biol Biochern 29:689–692.

    CAS  Google Scholar 

  • Larson RJ, Cowan CE (1995) Quantitative application of biodegradation data to environmental risk and exposure assessments. Environ Toxicol Chem 14:1433–1442.

    CAS  Google Scholar 

  • Laskowski, R (1995) Some good reasons to ban the use of NOEC, LOEC and related concepts in ecotoxicology. Oikos 73:140–144.

    Google Scholar 

  • Laskowski R, Maryanski M, Pyza E, Wojtusiak J (1996) Sublethal toxicity tests for long-lived iteroparous invertebrates: searching for a solution. In: Van Straalen NM, Krivoiutsky DA (eds) Bioindicator Systems for Soil Pollution. Kluwer, Dordrecht, pp 45–53.

    Google Scholar 

  • Lebrun Ph (1977) Incidences écologiques des pesticides sur la faune du sol. Pedologie 27:67–91.

    CAS  Google Scholar 

  • Legrand MF, Costentin E, Bruchet A (1991) Occurrence of 38 pesticides in various French surface and ground waters. Environ Toxicol Chem 12:985–996.

    CAS  Google Scholar 

  • Leistra M (1986) Modelling the behaviour of organic chemicals in soil and ground water. Pestic Sci 17:256–264.

    CAS  Google Scholar 

  • Lexmond TM, Edelman T, Van Driel W (1986) Voorlopige referentiewaarden en huidige achtergrondgehalten voor een aantal zware metalen en arseen in bovengrond van natuurterreinen en landbouwgronden. VTCB-advies A86/02. Technical Committee for Soil Protection, The Hague, Netherlands.

    Google Scholar 

  • Li CY, Nelson EE (1985) Persistence of benomyl and captan and their effects on microbial activity in field soils. Bull Environ Contam Toxicol 34:533–540.

    CAS  PubMed  Google Scholar 

  • Loch JPG (1990) Accumulation and leaching of the fungicide fentin acetate and intermediates in sandy soils. Water Air Soil Pollut 53:119–129.

    CAS  Google Scholar 

  • Lofs-Holmin A (1980) Measuring growth of earthworms as a method of testing sublethal toxicity of pesticides. Experiments with benomyl and trichloroacetic acid (TCA). Swed J Agric Res 10:25–33.

    CAS  Google Scholar 

  • Lofs-Holmin A (1982) Measuring cocoon production of the earthworm Allolobophora caliginosa (Say.) as a method of testing sublethal toxicity of pesticides. Swed J Agric Res 12:117–119.

    CAS  Google Scholar 

  • Lokke H (1994) Ecotoxicological extrapolation: tool or toy? In: Donker MH, Eijsackers H, Heimbach F (eds) Ecotoxicology of Soil Organisms. Lewis, Boca Raton, pp 411–425.

    Google Scholar 

  • Lokke H, Van Gestel CAM (eds) (1998) Development, improvement and standardization of test systems for assessing sublethal effects of chemicals on fauna in soil ecosystems. Wiley, New York (in press).

    Google Scholar 

  • Lake H, Christensen B, Moller J (1995) Extrapolation of the effects of glyphosate from the laboratory to the field. Arch Ochr Srodowiska 1:109–120.

    Google Scholar 

  • Lorin SJ, Snider RJ, Robertson LS (1981) The effects of three tillage practises on Collembola and Acarina populations. Pedobiologia 22:172–184.

    Google Scholar 

  • Luff ML, Clements RO, Bale JS (1990) An integrated approach to assessing effects of some pesticides in grassland. In: Proceedings, Brighton Crop Protection Council Conference—Pests and Diseases 1990 3B-2:143–152.

    Google Scholar 

  • Lynch MR (ed) (1995) Procedures for assessing the environmental fate and ecotoxicity of pesticides. SETAC-Europe, Brussels.

    Google Scholar 

  • Ma W, Bodt J (1993) Differences in toxicity of the insecticide chlorpyrifos to six species of earthworms (Oligochaeta, Lumbricidae) in standardized soil tests. Bull Environ Contam Toxicol 50:864–870.

    CAS  PubMed  Google Scholar 

  • Ma WC (1983) Regenwormen als bio-indicators van bodemverontreiniging. Bodembeschermingsreeks Ministerie VROM, Nr 15. Staatsuitgeverij, The Hague, Netherlands.

    Google Scholar 

  • MAFF (1986) Data requirements for approval under the control of pesticides regulations 1986. Ministry of Agriculture, Fisheries and Food, Worplesdon.

    Google Scholar 

  • Mallow D, Snider RJ, Roberson LS (1985) Effects of different management practises on Collembola and Acarina in corn production systems. II. The effects of moldboard plowing and atrazine, Pedobiologia 28:115–131.

    Google Scholar 

  • Mani M, Krishnamoorty A (1986) Susceptibility of Telenomus remus Nixon, an exotic parasitoid of Spodoptera litura (F.), to some pesticides. Trop Manage 32:49–51.

    CAS  Google Scholar 

  • Martin NA (1976) Effect of four insecticides on the pasture ecosystem. V. Earthworms (Oligochaeta: Lumbricidae) and Arthropoda extracted by wet sieving and salt flotation. N Z J Agric Res 19:111–115.

    Google Scholar 

  • Martin NA (1978) Effect of four insecticides on the pasture ecosystem. VI. Arthropoda dry heat-extracted from small soil cores, and conclusions. N Z J Agric Res 21:307–319.

    CAS  Google Scholar 

  • Martin NA (1980) Earthworm (Oligochaeta: Lumbricidae) populations and late summer pasture renovation. N Z J Agric Res 23:417–419.

    Google Scholar 

  • Martin NA (1986) Toxicity of pesticides to Allolobophora caliginosa (Oligochaeta: Lumbricidae) N Z J Agric Res 29:699–706.

    CAS  Google Scholar 

  • Mirgain I, Green GA, Monteil H (1993) Degradation of atrazine in laboratory microcosms: isolation and identification of the biodegrading bacteria. Environ Toxicol Chem 12:1627–1634.

    CAS  Google Scholar 

  • Mola L, Sabatini MA, Fratello B, Bertolani R (1987) Effects of atrazine on two species of Collembola (Onychiuridae) in laboratory tests. Pedobiologia 30:145–149.

    CAS  Google Scholar 

  • Moosbeckhofer R (1983a) Laboruntersuchungen über den Einfluß von Diazinon, Carbofuran and Chlorfenvinphos auf die Laufaktivität von Poecilus cupreus L. (Col., Carabidae). Z Angew Entomol 95:15–21.

    CAS  Google Scholar 

  • Moosbeckhofer R (1983b) Laboruntersuchungen über den Einfluß einiger Pflanzenschutzmittel auf Ei-and Larvenstadien von Poecilus cupreus L. and Poecilus sericeus Fischer d.w. (Col., Carabidae). Z Angew Entomol 95:513–523.

    CAS  Google Scholar 

  • Moriarty F (1972) The effects of pesticides on wildlife: exposures and residues. Sci Total Environ 1:267–288.

    CAS  PubMed  Google Scholar 

  • Mulla MS, Mian LS, Kawecki JA (1981) Distribution, transport and fate of the insecticides malathion and parathion in the environment. Residue Rev 81:1–172.

    CAS  PubMed  Google Scholar 

  • Neuhauser E, Callahan C (1990) Growth and reproduction of the earthworm Eisenia fetida exposed to sublethal concentrations of organic chemicals. Soil Biol Biochem 22:175–179.

    CAS  Google Scholar 

  • Neuhauser EF, Durkin PR, Malecki MR, Anatra M (1986) Comparative toxicity of ten organic chemicals to four earthworm species. Comp Biochem Physiol 83:197–200.

    CAS  Google Scholar 

  • Niederlehner BR, Pratt JR, Buikema All, Cairns JJ (1986) Comparison of estimates of hazard derived at three levels of complexity. In: Cairns J (ed) Community Toxicity Testing. ASTM STP 920. American Society for Testing and Materials, Philadelphia, pp 30–48.

    Google Scholar 

  • Norton SB, Rodier DJ, Gentile JH, Van der Schalie WH, Wood WP, Slimak MW (1992) A framework for ecological risk assessment at the EPA. Environ Toxicol Chem 11: 1663–1672.

    CAS  Google Scholar 

  • OECD (1984) Guideline for the testing of chemicals. No 207. Earthworm acute toxicity. Organization for Economic Co-operation and Development, Paris.

    Google Scholar 

  • Okkerman PC, Van de Plassche EJ, Emans HJB, Canton JH (1993) Validation of some extrapolation methods with toxicity data derived from multiple species experiments. Ecotoxicol Environ Saf 25:341–359.

    CAS  PubMed  Google Scholar 

  • Onyeocha F, Fuzeau-Braesch S (1990) Effets de différents insecticides sur la reproduction de criquet migrateur Locusta migratoria. C R Seances Soc Biol Fil 184:231–239.

    CAS  Google Scholar 

  • Ou LT, Gancarz DH, Wheeler WB, Rao PSC, Davidson JM (1982) Influence of soil temperature and soil moisture on degradation and metabolism of carbofuran in soils. J Environ Qual 11:293–302.

    CAS  Google Scholar 

  • Pols HB, Hieltjes AHM, Kouwe FA (1991) The occurrence and the sources of black list substances in two river basins in the Netherlands. Water Sci Technol 24:55–67.

    CAS  Google Scholar 

  • Popovici I, Stan G, Stefan V, Tomescu R, Dumea A, Tarta A, Dan F (1977) The influence of atrazine on soil fauna. Pedobiologia 17:209–215.

    CAS  Google Scholar 

  • Potter DA, Buxton MC, Redmond CT, Patterson CG, Powell AJ (1990) Toxicity of pesticides to earthworms (Oligochaeta: Lumbricidae) and effect on thatch degradation in Kentucky bluegrass turf. J Econ Entomol 83:2362–2369.

    CAS  Google Scholar 

  • Powell W, Dean GJ, Bardner R (1985) Effects of pirimicarb, dimethoate and benomyl on natural enemies of cereal aphids in winter wheat. Ann Appl Biol 106:235–242.

    CAS  Google Scholar 

  • Rajagopal BS, Brahmaprakash GP, Reddy BR, Singh UD, Sethunathan N (1984a) Effect and persistence of selected carbamate pesticides in soil. Residue Rev 93:1–153.

    CAS  Google Scholar 

  • Rajagopal BS, Chendrayan B, Reddy BR, Sethunathan N (1984b) Metabolism of carbaryl and carbofuran by soil-enrichment and bacterial cultures. Can J Microbiol 30:1458–1466.

    Google Scholar 

  • Rajagopal BS, Soudamini P, Sethunathan N (1986) Accelerated degradation of carbaryl and carbofuran in a flooded soil pretreated with hydrolysis products, 1-naphthol and carbofuran phenol. Bull Environ Contam Toxicol 36:827–832.

    CAS  PubMed  Google Scholar 

  • Reddy MV, Reddy VR (1992) Effects of organochlorine, organophosphorus and carbamate insecticides on the population structure of earthworms in a semi-arid tropical grassland. Soil Biol Biochem 24:1733–1738.

    CAS  Google Scholar 

  • Riepert F, Kula C (1996) Development of laboratory methods for testing effects of chemicals and pesticides on Collembola and earthworms. Mitt BBA 320:1–82.

    Google Scholar 

  • Risch SJ, Pimentel D, Grover H (1986) Corn monoculture versus old field: effects of low levels of insecticides. Ecology 67:505–515.

    CAS  Google Scholar 

  • Roark JH, Dale JL (1979) The effect of turf fungicides on earthworms. Ark Acad Sci Proc 33:71–74.

    CAS  Google Scholar 

  • Roberts BL, Dorough HW (1984) Relative toxicities of chemicals to the earthworm Eise-nia foetida. Environ Toxicol Chem 3:67–78.

    CAS  Google Scholar 

  • Roderiguez LD, Dorough HW (1977) Degradation of carbaryl by soil microorganisms. Arch Environ Contam Toxicol 6:47–56.

    Google Scholar 

  • Rtimbke J, Bauer C, Marschner A (1996) Hazard assessment of chemicals in soil. Proposed ecotoxicological test strategy. Environ Sci Pollut Res 3:78–82.

    Google Scholar 

  • Ronday R, Van Kammen-Polman AMM, Dekker A, Houx NWH, Leistra M (1997) Persistence and toxicological effects of pesticides in topsoil: use of equilibrium partitioning theory. Environ Toxicol Chem 16:601–607.

    CAS  Google Scholar 

  • Ruppel RF, Laughlin CW (1977) Toxicity of some soil pesticides to earthworms. J Kans Entomol Soc 50:113–118.

    CAS  Google Scholar 

  • Sabatini MA, Pederozoli A, Fratello B, Bertolani R (1979) Microarthropod communities in soil treated with atrazine. Boll Zool 46:335–341.

    Google Scholar 

  • Sahoo A, Sahu SK, Sharmita M, Sethunathan N (1990) Persistence of carbamate insecticides, carbosulfan and carbofuran in soils as influenced by temperature and microbial activity. Bull Environ Contam Toxicol 44:94–95.

    Google Scholar 

  • Samsoe-Petersen L (1983) Laboratory method for testing side effects of pesticides on juvenile stages of the predatory mite, Phytoseiulus persimilis (Athias-Henriot) (Acarina, Phytoseiidae) based on detached bean leaves. Entomophaga 28:167–178.

    CAS  Google Scholar 

  • Schaefer CH, Miura T, Dupras EFJ, Wilder WH (1981) Environmental impact of the fungicide tr iphenyltin hydroxide after application to rice fields. J Econ Entomol 74: 597–600.

    CAS  Google Scholar 

  • Schlosser HJ, Riepert F (1992) Entwicklung eines Prüfverfarhrens für Chemikalien an Bodenraubmilben (Gamasina). Teil 2: Erste Ergebnisse mit Lindan and Kaliumdichromat in subletaler Dosierung. Zool Beitr NF 34:413–433.

    Google Scholar 

  • Scopes NEA, Lichtenstein EP (1967) The use of Folsomia fimetaria and Drosophila melanogaster as test insects for the detection of insecticide residues. J Econ Entomol 60:1537–1541.

    Google Scholar 

  • Seastedt TT (1984) The role of microarthropods in decomposition and mineralization processes. Annu Rev Entomol 29:25–46.

    Google Scholar 

  • Sheehan PJ, Airier RP, Newhook RC (1986) Evaluation of simple generic aquatic ecosystem tests to screen the ecological impact of pesticides. In: Cairns J Jr (ed) Community Toxicity Testing. ASTM STP 920. American Society for Testing and Materials, Philadelphia, pp 158–179.

    Google Scholar 

  • Sherratt TN, Jepson PC (1993) A metapopulation approach to modelling the long-term impact of pesticides on invertebrates. J Appl Ecol 30:696–705.

    Google Scholar 

  • Shore RF, Douben PET (1994) Predicting ecotoxicological impacts of environmental contaminants on terrestrial small mammals. Rev Environ Contam Toxicol 134:49–89.

    CAS  PubMed  Google Scholar 

  • Smissaert HR, Jansen AAM (1984) On the variation of toxic effects over species, its cause, and analysis by “structure-selectivity relations”. Ecotoxicol Environ Saf 8: 294–302.

    CAS  PubMed  Google Scholar 

  • Smith EP, Cairns J Jr (1993) Extrapolation methods for setting ecological standards for water quality: statistical and ecological concerns. Ecotoxicology 2:203–219.

    CAS  PubMed  Google Scholar 

  • Snider RJ, Moore JC, Subagja J (1985) Effects of paraquat and atrazine on non-target soil arthropods. In: FM D’Itri (ed) A Systems Approach to Conservation Tillage. Lewis, Chelsea, MI, pp 145–153.

    Google Scholar 

  • Somasundaram L, Coats JR, Racke KD, Shanbhag VM (1991) Mobility of pesticides and their hydrolysis metabolites in soil. Environ Toxicol Chem 10:185–194.

    CAS  Google Scholar 

  • Sorensen FF, Bayley M, Baatrup E (1995) The effects of sublethal dimethoate exposure on the locomotor behavior of the collembolan Folsomia candida (Isotomodae). Environ Toxicol Chem 14:1578–1590.

    Google Scholar 

  • Stab JA, Cofino WP, Van Hattum B (1994) Assessment of transport routes of triphenyltin used in potato culture in the Netherlands. Anal Chim Acta 286:335–341.

    Google Scholar 

  • Stegeman LC (1964) The effects of the carbamate insecticide carbaryl upon forest soil mites and Collembola. J Econ Entomol 57:803–808.

    CAS  Google Scholar 

  • Stenersen J (1979a) Action of pesticides on earthworms. Part I: The toxicity of cholinesterase-inhibiting insecticides to earthworms as evaluated by laboratory tests. Pestic Sci 10:66–74.

    CAS  Google Scholar 

  • Stenersen J (1979b) Action of pesticides on earthworms. Part III: Inhibition and reactivation of cholinesterases in Eisenia foetida (Savigny) after treatment with cholinesterase-inhibiting insecticides. Pestic Sci 10:113–112.

    CAS  Google Scholar 

  • Stenersen J, Brekke E, Engelstad F (1992) Earthworms for toxicity testing; species differences in response towards cholinesterase inhibiting insecticides. Soil Biol Biochem 24:1761–1764.

    CAS  Google Scholar 

  • Stenersen J, Gilman A, Vardanis A (1973) Carbofuran: its toxicity to and metabolism by earthworm (Lumbricus terrestris). J Agric Food Chem 21:166–171.

    CAS  PubMed  Google Scholar 

  • Stringer A, Lyons CH (1974) The effect of benomyl and thiophanate-methyl on earthworm populations in apple orchards. Pestic Sci 5:189–196.

    CAS  Google Scholar 

  • Stringer A, Wright AM (1976) The toxicity of benomyl and some related 2-substituted benzimidazoles to the earthworm Lumbricus terrestris. Pestic Sci 7:459–464.

    CAS  Google Scholar 

  • Subagja J, Snider RJ (1981) The side effects of the herbicides atrazine and paraquat upon Folsomia candida and Tullbergia granulata (Insecta, Collembola). Pedobiologia 22:141–152.

    CAS  Google Scholar 

  • Tanigoshi LK, Fagerlund J (1984) Implications of parathion resistance and toxicity of citricultural pesticides to a strain of Euseius hibisci (Chant) (Acarina: Phytoseiidae) from the San Joaquin Valley of California. J Econ Entomol 77:789–793.

    CAS  Google Scholar 

  • Thacker JRM, Jepson PC (1993) Pesticide risk assessment and non-target invertebrates: integrating population depletion, population recovery and experimental design. Bull Environ Contam Toxicol 51:523–531.

    CAS  PubMed  Google Scholar 

  • Thomas B (1995) New directions: report from Europe. In: Ragsdale NN, Kearney PC, Plimmer JR (eds) Eight International Congress of Pesticide Chemistry. Options 2000. American Chemical Society, Washington, DC, pp 382–388.

    Google Scholar 

  • Thomas CFG, Hol EHA, Everts JW (1990) Modelling the diffusion component of dispersal during recovery of a population of linyphiid spiders from exposure to an insecticide. Funct Ecol 4:357–368.

    Google Scholar 

  • Thompson AR (1970) Effects of nine insecticides on the numbers and biomass of earthworms in pasture. Bull Environ Contam Toxicol 5:577–586.

    CAS  PubMed  Google Scholar 

  • Thompson AR (1973) Persistence of biological activity of seven insecticides in soil assayed with Folsomia candida. J Econ Entomol 66:855–857.

    CAS  PubMed  Google Scholar 

  • Thompson AR, Gore FL (1972) Toxicity of twenty-nine insecticides to Folsomia candida: laboratory studies. J Econ Entomol 65:1255–1260.

    CAS  PubMed  Google Scholar 

  • Thompson AR, Sans WW (1974) Effects of soil insecticides in southwestern Ontario on non-target invertebrates: earthworms in pasture. Environ Entomol 3:305–308.

    CAS  Google Scholar 

  • Tomlin AD (1975a) The toxicity of insecticides by contact and soil treatment to two species of ground beetles (Coleoptera: Carabidae). Can Entomol 107:529–532.

    CAS  Google Scholar 

  • Tomlin AD (1975b) Toxicity of soil application of insecticides to three species of spring-tails (Collembola) under laboratory conditions. Can Entomol 107:796–774.

    Google Scholar 

  • Tomlin AD (1977) Toxicity of soil applications of the fungicide benomyl, and two analogues, to three species of Collembola. Can Entomol 109:1619–1620.

    CAS  Google Scholar 

  • Tomlin AD, Gore FL (1974) Effects of six insecticides and a fungicide on the numbers and biomass of earthworms in pasture. Bull Environ Contam Toxicol 12:487–492.

    CAS  PubMed  Google Scholar 

  • Unal G, Jepson PC (1991) The toxicity of aphicide residues to beneficial invertebrates in cereal crops. Ann Appl Biol 118:493–502.

    CAS  Google Scholar 

  • Van Brummelen TC, Van Gestel CAM, Verweij RA (1996) Long-term toxicity of five polycyclic aromatic hydrocarbons for the terrestrial isopods Oniscus asellus and Porcellio scaber. Environ Toxicol Chem 15:1199–1210.

    Google Scholar 

  • Van de Bund C (1965) Changes in the soil fauna caused by the application of insecticides. Boll Zool Agrar Bachic (Ser II) 7:185–212.

    Google Scholar 

  • Van der Hoeven N (1997) How to measure no effect? Part III: Statistical aspects of NOEC, EC, and NEC estimates. Environmetrics 8:255–261.

    Google Scholar 

  • Van der Valk H, Diakhaté H, Seck A (1996) The toxicity of locust control insecticides to Pimelia senegalensis and Trachyderma hispida (Coleoptera, Tenebrionidae). Locustox Report 96/6. Food and Agricultural Organization of the United Nations, Rome.

    Google Scholar 

  • Van Gestel CAM (1992a) Validation of earthworm toxicity tests by comparison with field studie: a review on benomyl, carbendazim, carbofuran and carbaryl. Ecotoxicol Environ Sal 23:221–236.

    Google Scholar 

  • Van Gestel CAM (1992b) The influence of soil characteristics on the toxicity of chemicals for earthworms: a review. In: Greig-Smith PW, Becker H, Edwards PJ, Heimbach F (eds) Ecotoxicology of Earthworms. Intercept, Andover, pp 44–54.

    Google Scholar 

  • Van Gestel CAM (1997) Scientific basis for extrapolating results from soil ecotoxicity tests to field conditions and the use of bioassays. In: Van Straalen NM, Lake H (eds) Ecological Risk Assessment of Contaminants in Soil. Chapman & Hall, London, pp 25–50.

    Google Scholar 

  • Van Gestel CAM, Van Straalen NM (1994) Ecotoxicological test systems for terrestrial invertebrates. In: Donker MH, Eijsackers H, Heimbach F (eds) Ecotoxicology of Soil Organisms. Lewis, Boca Raton, pp 205–228.

    Google Scholar 

  • Van Gestel CAM, Van Dis WA, Van Breemen EM, Sparenburg PM (1989) Development of a standardized reproduction toxicity test with the earthworm species Eisenia fetida andrei using copper, pentachlorophenol, and 2,4-dichloroaniline. Ecotoxicol Environ Saf 18:305–312.

    PubMed  Google Scholar 

  • Van Gestel CAM, Dirven-Van Breemen EM, Baerselman R, Emans HJB, Janssen JAM, Postuma R, Van Vliet PJM (1992) Comparison of sublethal and lethal criteria for nine different chemicals in standardized toxicity tests using the earthworm Eisenia andrei. Ecotoxicol Environ Saf 23:206–220.

    PubMed  Google Scholar 

  • Van Gestel CAM, Zaal J, Dirven-Van Breemen EM, Baerselman R (1995) Comparison of two test methods for determining the effects of pesticides on earthworm reproduction. Acta Zool Fenn 196:278–283.

    Google Scholar 

  • Van Leeuwen CJ, Hermens JLM (eds) (1995) Risk Assessment of Chemicals. An Introduction. Kluwer, Dordrecht.

    Google Scholar 

  • Van Rhee JA (1969) Effects of biocides and their residues on earthworms. Meded Fac Landbouwwet Rijksuniv Gent 34:682–689.

    Google Scholar 

  • Van Rijn JP, Hennans M, Van Gestel CAM, Van Straalen NM (1994) Estimating ecological risks of pesticides by combined assessment of toxicity and persistence in soil. In: Widianarko B, Vink K, Van Straalen NM (eds) Environmental Toxicology in South East Asia. VU University Press, Amsterdam, pp 289–300.

    Google Scholar 

  • Van Rijn JP, Van Straalen NM, Willems J (1995) Handboek Bestrijdingsmiddelen. Gebruik & Milieueffecten. VU Uitgeverij, Amsterdam.

    Google Scholar 

  • Van Straalen NM, Denneman CM (1989) Ecotoxicological evaluation of soil quality criteria. Ecotoxicol Environ Saf 18:241–251.

    PubMed  Google Scholar 

  • Van Straalen NM, Kammenga JE (1997) Assessment of ecotoxicity at the population level using demographic parameters. In: Schiiilrmann F, Markert B (eds) Ecotoxicology. Wiley, New York, pp 621–644.

    Google Scholar 

  • Van Straalen NM, Van Gestel CAM (1993) Soil invertebrates and micro-organisms. In: Calow P (ed) Handbook of Ecotoxicology. Blackwell, Oxford, pp 251–277.

    Google Scholar 

  • Van Straalen NM, Schobben JHM, Traas TP (1992). The use of ecotoxicological risk assessment in deriving maximum acceptable half-lives of pesticides. Pestic Sci 34: 227–231.

    Google Scholar 

  • Van Straalen NM, Van Rijn JP, Van Gestel CAM (1995) Ecotoxicological risk assessment of pesticides in soil. In: Ragsdale NN, Kearney PC, Plimmer JR (eds) Eight International Congress of Pesticide Chemistry. Options 2000. American Chemical Society, Washington, DC, pp 418–423.

    Google Scholar 

  • Van Wensem J, Jagers op Akkerhuis GAJM, Van Straalen NM (1991) Effects of the fungicide triphenyltin hydroxide on soil fauna-mediated litter decomposition. Pestic Sci 32:307–316.

    Google Scholar 

  • Vegter JJ (1996) Soil protection. In: De Haan FAM, Visser-Reyneveld MI (eds) Soil Pollution and Soil Protection. International Training Centre (PHLO), Wageningen, pp 19–34.

    Google Scholar 

  • Verhoef HA, Brussaard L (1990) Decomposition and nitrogen mineralization in natural and agro-ecosystems: the contribution of soil animals. Biogeochemistry (Dordr) 11: 175–211.

    Google Scholar 

  • Vickerman GP (1992) The effects of different pesticide regimes on the invertebrate fauna of winter wheat. In: Greig-Smith PW, Frampton GK, Hardy AR (eds) Pesticides, Cereal Fanning and the Environment. The Boxworth Project. HMSO, London, pp 82–109.

    Google Scholar 

  • Vickerman GP, Sunderland KD (1977) Some effects of dimethoate on arthropods in winter wheat. J Appl Ecol 14:767–777.

    CAS  Google Scholar 

  • Vickerman GP, Coombes DS, Turner G, Mead-Briggs MA, Edwards J (1987) The effects of pirimicarb, dimethoate and deltamethrin on Carabidae and Staphylinidae in winter wheat. Meded Fac Landbouwwet Rijksuniv Gent 52:213–223.

    CAS  Google Scholar 

  • Vighi M (1992) Ecotoxicological contribution for the economic evaluation of water pollution control strategies. Water Sci Technol 25:457–464.

    CAS  Google Scholar 

  • Vink K, Dewi L, Bedaux J, Tompot A, Hermans M, Van Straalen NM (1995) The importance of the exposure route when testing the toxicity of pesticides to saprotrophic arthropods. Environ Toxicol Chem 14:1225–1232.

    CAS  Google Scholar 

  • Viswanathan R, Ray S, Scheunert I, Korte F (1988) Investigations on accumulation and biotransformation by earthworms of lindane occurring as soil contaminant. In: Abbou R (ed) Hazardous Waste: Detection, Control, Treatment. Elsevier, Amsterdam, pp 759–765.

    Google Scholar 

  • Vonk JW, Adema DMM, Barug D (1986) Comparison of the effects of several chemicals on microorganisms, higher plants and earthworms. In: Assink JW, Van den Brink JW (eds) Contaminated Soil. Martinus Nijhoff, Dordrecht, pp 191–201.

    Google Scholar 

  • Voronova LD (1968) The effect of some pesticides on the soil invertebrate fauna in the South Taiga Zone in the Penn Region (USSR). Pedobiologia 8:507–525.

    Google Scholar 

  • Wagner C, Lake H (1991) Estimation of ecotoxicological protection levels from NOEC toxicity data. Water Res 25:1237–1242.

    CAS  Google Scholar 

  • Wheatley GA, Hardman JA (1968) Organochlorine insecticide residues in earthworms from arable soils. J Sci Food Agric 19:219–225.

    CAS  Google Scholar 

  • Widianarko B, Van Straalen NM (1996) Toxicokinetics-based survival analysis in bioassays using nonpersistent chemicals. Environ Toxicol Chem 15:402–406.

    CAS  Google Scholar 

  • Wiens JA (1996) Coping with variability in environmental impact assessment. In: Baird DJ, Maltby L, Greig-Smith PW, Douben PT (eds) Ecotoxicology: Ecological Dimensions. Chapman & Hall, London, pp 55–70.

    Google Scholar 

  • Wiles JA, Frampton GK (1996) A field bioassay approach to assess the toxicity of insecticide residues on soil to Collembola. Pestic Sci 47:273–285.

    CAS  Google Scholar 

  • Wiles JA, Jepson PC (1992) The susceptibility of a cereal aphid pest and its natural enemies to deltamethrin. Pestic Sci 36:263–272.

    CAS  Google Scholar 

  • Winkelman DA, Klaine SJ (1991a) Degradation and bound residue formation of atrazine in a Western Tennessee soil. Environ Toxicol Chem 10:335–345.

    Google Scholar 

  • Winkelman DA, Klaine SJ (1991b) Degradation and bound residue formation of four atrazine metabolites, deethylatrazine, deisopropylatrazine, dealkylatrazine and hydroxyatrazine, in a Western Tennessee soil. Environ Toxicol Chem 10:347–354.

    Google Scholar 

  • Worthing CR, Hance R (eds) (1991) The Pesticide Manual. British Crop Protection Council, Farnham, Surrey.

    Google Scholar 

  • Wright MA (1977) Effects of benomyl and some other systemic fungicides on earthworms. Ann Appl Biol 87:520–524.

    CAS  Google Scholar 

  • Yadav TD (1980) Toxicity of DDT and lindane against thirteen species of stored product insects. Indian J Entomol 42:671–674.

    CAS  Google Scholar 

  • Zoran MJ, Heppner TJ, Drewes CD (1985) Teratogenic effects of the fungicide benomyl on posterior segmental regeneration in the earthworm, Eisenia fetida. Pestic Sci 17: 641–652.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

van Straalen, N.M., van Rijn, J.P. (1998). Ecotoxicological Risk Assessment of Soil Fauna Recovery from Pesticide Application. In: Ware, G.W. (eds) Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, vol 154. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2208-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2208-8_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7459-9

  • Online ISBN: 978-1-4612-2208-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics