Advertisement

Analysis of Shock-Induced Damage in Fiber-Reinforced Composites

  • F. L. Addessio
  • J. B. Aidun
Part of the High-Pressure Shock Compression of Condensed Matter book series (SHOCKWAVE)

Abstract

Under the conditions of high strain rates and large deformations, engineered composites can experience large mean- and shear-stress states. Accurate numerical simulations for the mechanical response of these anisotropic materials under these conditions must include the effects of nonlinear elasticity and inelastic phenomena such as plasticity and damage. Modeling composite materials involves the additional complexity of requiring constitutive models for the interfaces as well as the constituents. Interfacial debonding of the fiber and matrix materials and delamination between the layers of a laminate provide two important failure mechanisms within composite structures. Physically based material models are desirable for simulating the thermomechanical response of composites. Computational simulations are useful for reducing the number of candidate designs for laminated, fiber-reinforced composites and for interpreting the deformation mechanisms observed in both controlled experiments and integrated tests. Furthermore, the availability of good computational models can reduce the costs of validation experiments, which are necessary for the design of engineering structures.

Keywords

Constitutive Model Representative Volume Element Inelastic Strain Plastic Strain Rate Computational Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G.L. Povirk, A. Needleman, and S.R. Nutt, Mater. Sci. Eng. A125, pp. 129–140 (1990).Google Scholar
  2. [2]
    J. Aboudi, Int. J. Engng. Sci. 23(7), pp. 773–787 (1985).zbMATHCrossRefGoogle Scholar
  3. [3]
    J. Aboudi, Int. J. Engng. Sci. 20, pp. 605–621 (1982).zbMATHCrossRefGoogle Scholar
  4. [4]
    J. Aboudi, Int. J. Engng. Sci. 22(4), pp. 439–449 (1984).zbMATHCrossRefGoogle Scholar
  5. [5]
    M.J. Pindera and J. Aboudi, Int. J. Plast. 4, pp. 195–214 (1988).CrossRefGoogle Scholar
  6. [6]
    J.M. McGlaun and P. Yarrington, in High-Pressure Shock Compression of Solids (ed. J.R. Asay and M. Shahinpoor), Springer-Verlag, New York (1992).Google Scholar
  7. [7]
    D. Sulsky, Z. Chen, and H.L. Sehreyer, Comput. Meth. Appl. Engrg. 118, pp. 179–196 (1994).zbMATHCrossRefGoogle Scholar
  8. [8]
    J.B. Aidum and F.L. Addessio, J. Compos. Mater. (in press).Google Scholar
  9. [9]
    J. Aboudi, Int. J. Solids Struct. 17, pp. 1005–1018 (1981).MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    F.L. Addessio and J.N. Johnson, J. Appl. Phys. 74(3), pp. 1640–1648 (1993).ADSCrossRefGoogle Scholar
  11. [11]
    F.L. Addessio and J.N. Johnson, J. Appl. Phys. 67(7), pp. 3275–3286 (1990).ADSCrossRefGoogle Scholar
  12. [12]
    G.R. Johnson and W.H. Cook, Eng. Fracture Mech. 21(1), pp. 31–48 (1985).CrossRefGoogle Scholar
  13. [13]
    P.S. Follansbee and U.F. Kocks, Acta Metall 36(1), pp. 81–93 (1988).CrossRefGoogle Scholar
  14. [14]
    F.J. Zerilli and R.W. Armstrong, J. Appl. Phys. 61, pp. 1816–1825 (1987).ADSCrossRefGoogle Scholar
  15. [15]
    S.R. Bodner and Y. Partom, J. Appl Mech. 4, pp. 385–389 (1975).CrossRefGoogle Scholar
  16. [16]
    J.K. Dienes, Mech. Mater. 4, pp. 325–335 (1985).CrossRefGoogle Scholar
  17. [17]
    A.L. Gurson, J. Eng. Mater. Technol. 99, pp. 2–15 (1977).CrossRefGoogle Scholar
  18. [18]
    L.J. Sluys, Wave Propagation, Localisation, and Dispersion in Softening Solids, Ph.D. Thesis, Delft University of Technology, Netherlands (1992).Google Scholar
  19. [19]
    N.R. Hansen, Theories of Elastoplasticity Coupled with Continuum Damage Mechanics, Sandia report SAND92-1436, Sandia National Laboratories, Albuquerque, New Mexico (1993).Google Scholar
  20. [20]
    J.P. Jones, and J.S. Whittier, J. Appl. Mech. 34, pp. 905–909 (1967).Google Scholar
  21. [21]
    J. Aboudi, Compos. Sci. Tech. 28, pp. 103–128 (1987).CrossRefGoogle Scholar
  22. [22]
    J. Aboudi, Int. J. Plasticity 4, pp. 103–125 (1988).zbMATHCrossRefGoogle Scholar
  23. [23]
    A. Needleman, J. Appl. Mech. 54, pp. 525–531 (1987).ADSzbMATHCrossRefGoogle Scholar
  24. [24]
    A. Needleman, J. Mech. Phys. Solids 38(3), pp. 289–324 (1990).ADSCrossRefGoogle Scholar
  25. [25]
    A. Needleman, Int. J. Fracture 42, pp. 21–40 (1990).CrossRefGoogle Scholar
  26. [26]
    M. Finot, Y.-L. Shen, A. Needleman, and S. Suresh, Met. Mater. Trans. A 25A, pp. 2403–2420 (1994).CrossRefGoogle Scholar
  27. [27]
    J.D. McGee and C.T. Herakovich, Micromechanics of Fiber/Matrix Debonding, Center for Light Thermal Structures Interim Report AM-92-01, University of Virginia, Charlottesville, Virginia (1992).Google Scholar
  28. [28]
    J.N. Johnson, R. S. Hixson, and G.T. Gray, J. Appl. Phys. 76(10), pp. 5706–5718 (1994).ADSCrossRefGoogle Scholar
  29. [29]
    J.K. Dienes, Acta Mech. 32, pp. 217–232 (1979).MathSciNetzbMATHCrossRefGoogle Scholar
  30. [30]
    D.P. Flanagan and L.M. Taylor, Comput. Meth. Appl. Mech. Engr. 62, pp. 305–320 (1987).zbMATHCrossRefGoogle Scholar
  31. [31]
    F.L. Addessio, D.E. Carroll, J.K. Dukowicz, F.H. Harlow, J.N. Johnson, B.A. Kashiwa, M.E. Maltrud, and H.M. Ruppel, CAVEAT: A Computer Code for Fluid Dynamics Problems with Large Distortion and Internal Slip, Los Alamos National Laboratory report LA-10613-MS, Los Alamos, New Mexico (1984).Google Scholar
  32. [32]
    C.T. Sun, J.D. Achenbach, and G. Herrmann, J. Appl. Mech. 35, pp. 467–475 (1968).zbMATHGoogle Scholar
  33. [33]
    R.A. Grot and J.D. Achenbach, Acta Mech. 9, pp. 245–263 (1970).zbMATHCrossRefGoogle Scholar
  34. [34]
    F.L. Addessio and J.B. Aidun, Computational Modeling of Fiber-Reinforced Composites, 14th IMACS World Congress Meeting, July 11–15, Atlanta (1994).Google Scholar
  35. [35]
    J. Wackerle, J. Appl. Phys. 33, pp. 922–937 (1962).ADSCrossRefGoogle Scholar
  36. [36]
    L. Barker and R.E. Hollenbach, J. Appl. Phys. 41, pp. 4208–4226 (1970).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1998

Authors and Affiliations

  • F. L. Addessio
  • J. B. Aidun

There are no affiliations available

Personalised recommendations