Skip to main content

Analysis of Shock-Induced Damage in Fiber-Reinforced Composites

  • Chapter
High-Pressure Shock Compression of Solids III

Part of the book series: High-Pressure Shock Compression of Condensed Matter ((SHOCKWAVE))

Abstract

Under the conditions of high strain rates and large deformations, engineered composites can experience large mean- and shear-stress states. Accurate numerical simulations for the mechanical response of these anisotropic materials under these conditions must include the effects of nonlinear elasticity and inelastic phenomena such as plasticity and damage. Modeling composite materials involves the additional complexity of requiring constitutive models for the interfaces as well as the constituents. Interfacial debonding of the fiber and matrix materials and delamination between the layers of a laminate provide two important failure mechanisms within composite structures. Physically based material models are desirable for simulating the thermomechanical response of composites. Computational simulations are useful for reducing the number of candidate designs for laminated, fiber-reinforced composites and for interpreting the deformation mechanisms observed in both controlled experiments and integrated tests. Furthermore, the availability of good computational models can reduce the costs of validation experiments, which are necessary for the design of engineering structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.L. Povirk, A. Needleman, and S.R. Nutt, Mater. Sci. Eng. A125, pp. 129–140 (1990).

    Google Scholar 

  2. J. Aboudi, Int. J. Engng. Sci. 23(7), pp. 773–787 (1985).

    Article  MATH  Google Scholar 

  3. J. Aboudi, Int. J. Engng. Sci. 20, pp. 605–621 (1982).

    Article  MATH  Google Scholar 

  4. J. Aboudi, Int. J. Engng. Sci. 22(4), pp. 439–449 (1984).

    Article  MATH  Google Scholar 

  5. M.J. Pindera and J. Aboudi, Int. J. Plast. 4, pp. 195–214 (1988).

    Article  Google Scholar 

  6. J.M. McGlaun and P. Yarrington, in High-Pressure Shock Compression of Solids (ed. J.R. Asay and M. Shahinpoor), Springer-Verlag, New York (1992).

    Google Scholar 

  7. D. Sulsky, Z. Chen, and H.L. Sehreyer, Comput. Meth. Appl. Engrg. 118, pp. 179–196 (1994).

    Article  MATH  Google Scholar 

  8. J.B. Aidum and F.L. Addessio, J. Compos. Mater. (in press).

    Google Scholar 

  9. J. Aboudi, Int. J. Solids Struct. 17, pp. 1005–1018 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  10. F.L. Addessio and J.N. Johnson, J. Appl. Phys. 74(3), pp. 1640–1648 (1993).

    Article  ADS  Google Scholar 

  11. F.L. Addessio and J.N. Johnson, J. Appl. Phys. 67(7), pp. 3275–3286 (1990).

    Article  ADS  Google Scholar 

  12. G.R. Johnson and W.H. Cook, Eng. Fracture Mech. 21(1), pp. 31–48 (1985).

    Article  Google Scholar 

  13. P.S. Follansbee and U.F. Kocks, Acta Metall 36(1), pp. 81–93 (1988).

    Article  Google Scholar 

  14. F.J. Zerilli and R.W. Armstrong, J. Appl. Phys. 61, pp. 1816–1825 (1987).

    Article  ADS  Google Scholar 

  15. S.R. Bodner and Y. Partom, J. Appl Mech. 4, pp. 385–389 (1975).

    Article  Google Scholar 

  16. J.K. Dienes, Mech. Mater. 4, pp. 325–335 (1985).

    Article  Google Scholar 

  17. A.L. Gurson, J. Eng. Mater. Technol. 99, pp. 2–15 (1977).

    Article  Google Scholar 

  18. L.J. Sluys, Wave Propagation, Localisation, and Dispersion in Softening Solids, Ph.D. Thesis, Delft University of Technology, Netherlands (1992).

    Google Scholar 

  19. N.R. Hansen, Theories of Elastoplasticity Coupled with Continuum Damage Mechanics, Sandia report SAND92-1436, Sandia National Laboratories, Albuquerque, New Mexico (1993).

    Google Scholar 

  20. J.P. Jones, and J.S. Whittier, J. Appl. Mech. 34, pp. 905–909 (1967).

    Google Scholar 

  21. J. Aboudi, Compos. Sci. Tech. 28, pp. 103–128 (1987).

    Article  Google Scholar 

  22. J. Aboudi, Int. J. Plasticity 4, pp. 103–125 (1988).

    Article  MATH  Google Scholar 

  23. A. Needleman, J. Appl. Mech. 54, pp. 525–531 (1987).

    Article  ADS  MATH  Google Scholar 

  24. A. Needleman, J. Mech. Phys. Solids 38(3), pp. 289–324 (1990).

    Article  ADS  Google Scholar 

  25. A. Needleman, Int. J. Fracture 42, pp. 21–40 (1990).

    Article  Google Scholar 

  26. M. Finot, Y.-L. Shen, A. Needleman, and S. Suresh, Met. Mater. Trans. A 25A, pp. 2403–2420 (1994).

    Article  Google Scholar 

  27. J.D. McGee and C.T. Herakovich, Micromechanics of Fiber/Matrix Debonding, Center for Light Thermal Structures Interim Report AM-92-01, University of Virginia, Charlottesville, Virginia (1992).

    Google Scholar 

  28. J.N. Johnson, R. S. Hixson, and G.T. Gray, J. Appl. Phys. 76(10), pp. 5706–5718 (1994).

    Article  ADS  Google Scholar 

  29. J.K. Dienes, Acta Mech. 32, pp. 217–232 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  30. D.P. Flanagan and L.M. Taylor, Comput. Meth. Appl. Mech. Engr. 62, pp. 305–320 (1987).

    Article  MATH  Google Scholar 

  31. F.L. Addessio, D.E. Carroll, J.K. Dukowicz, F.H. Harlow, J.N. Johnson, B.A. Kashiwa, M.E. Maltrud, and H.M. Ruppel, CAVEAT: A Computer Code for Fluid Dynamics Problems with Large Distortion and Internal Slip, Los Alamos National Laboratory report LA-10613-MS, Los Alamos, New Mexico (1984).

    Google Scholar 

  32. C.T. Sun, J.D. Achenbach, and G. Herrmann, J. Appl. Mech. 35, pp. 467–475 (1968).

    MATH  Google Scholar 

  33. R.A. Grot and J.D. Achenbach, Acta Mech. 9, pp. 245–263 (1970).

    Article  MATH  Google Scholar 

  34. F.L. Addessio and J.B. Aidun, Computational Modeling of Fiber-Reinforced Composites, 14th IMACS World Congress Meeting, July 11–15, Atlanta (1994).

    Google Scholar 

  35. J. Wackerle, J. Appl. Phys. 33, pp. 922–937 (1962).

    Article  ADS  Google Scholar 

  36. L. Barker and R.E. Hollenbach, J. Appl. Phys. 41, pp. 4208–4226 (1970).

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Addessio, F.L., Aidun, J.B. (1998). Analysis of Shock-Induced Damage in Fiber-Reinforced Composites. In: Davison, L., Shahinpoor, M. (eds) High-Pressure Shock Compression of Solids III. High-Pressure Shock Compression of Condensed Matter. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2194-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2194-4_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7454-4

  • Online ISBN: 978-1-4612-2194-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics