Advertisement

Initiation and Propagation of Detonation in Condensed-Phase High Explosives

  • Ray Engelke
  • Stephen A. Sheffield
Part of the High-Pressure Shock Compression of Condensed Matter book series (SHOCKWAVE)

Abstract

When the term detonation is mentioned, most people picture a violent, uncontrolled, chaotic event such as that shown in Fig. 7.1. We will present a picture of a detonation as an orderly event that is governed and rigorously describable in terms of the conservation of mass, momentum, and energy and certain material-specific properties of the explosive. When a detonation is viewed experimentally, on the proper time and space scales, the observed wave phenomena are orderly and, when variables are well controlled in the experiment, have some simplicity. The photograph in Fig. 7.2 illustrates this; i.e., an orderly wave progressing along a cylindrical explosive charge.

Keywords

Shock Wave Detonation Wave Detonation Velocity High Explosive Hugoniot Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Berthelot and P. Vielle, C. R. Hebd. Sceances Acad. Sci. 93, p. 18 (1881).Google Scholar
  2. [2]
    M. Berthelot and P. Vielle, C. R. Hebd. Sceances Acad. Sci. 94, p. 149 and 94, p. 882 (1882).Google Scholar
  3. [3]
    E. Mallard and H. Le Chatelier, C. R. Hebd. Sceances Acad. Sci. 93, p. 145 (1881).Google Scholar
  4. [4]
    D.L. Chapman, Philos. Mag. 47, p. 90 (1899).Google Scholar
  5. [5]
    E. Jouguet, J. Math. Pure Appliq. 1, p. 347 (1905).Google Scholar
  6. [6]
    Ya.B. Zeldovich, Sh. Eksp. Teor. Fiz. 10, p. 542 (1940). (English Translation: NACA TM 1261, 1960.)Google Scholar
  7. [7]
    J. von Neumann, Progress Report on the Theory of Detonation Waves, OSRD Report No. 549 (1942); in John von Neumann Collected Works, Vol 6, Pergamon Press, New York, pp. 203 (1963).Google Scholar
  8. [8]
    W. Doering, Ann. Phys. 43, p. 421 (1943).CrossRefGoogle Scholar
  9. [9]
    W. Fickett and W.O. Davis, Detonation, University of California Press, Berkeley (1979).Google Scholar
  10. [10]
    A.N. Dremin, S.D. Savrov, V.S. Trofimov, and K.K. Shvedov, Detonation Waves in Condensed Media (1970). Translation from Russian, Nat. Tech. Info. Service AD-751417, Springfield, VA.Google Scholar
  11. [11]
    R.A. Strehlow, Combustion Fundamentals, McGraw-Hill Book Co., New York (1984).Google Scholar
  12. [12]
    C.H. Johansson and P.A. Persson, Detonics of High Explosives. Academic Press, New York (1970).Google Scholar
  13. [13]
    Picatinny Arsenal/Large Caliber Weapons Systems Lab., Encyclopedia of Explosives and Related Items (ed. B.T. Fedoroff et al.), in 10 volumes, Dover, NJ (1960 to 1983).Google Scholar
  14. [14]
    Ya.B. Zeldovich and Yu.P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Academic Press, New York (1966–67); Ya.B. Zeldovich and A.S. Kompaneets, Teoriya Detonatsii (Theory of Detonations), Gostekhizdat, Moscow (1955). (English Translation: Academic Press, New York, 1960.)Google Scholar
  15. [15]
    P.W. Cooper, Explosives Engineering, VCH, New York (1996).Google Scholar
  16. [16]
    R. Chéret, Detonation of Condensed Explosives, Springer-Verlag, New York (1993).Google Scholar
  17. [17]
    M.B. Boslough and J.R. Asay, in High-Pressure Shock Compression of Solids (ed. J.R. Asay and M. Shahinpoor), Springer-Verlag, New York, p. 7 (1993).Google Scholar
  18. [18]
    P.A. Thompson, Compressible-Fluid Dynamics, McGraw-Hill, New York, pp. 306–311 (1972).MATHGoogle Scholar
  19. [19]
    J. Rayleigh, Proc. Roy. Soc. London 84, p. 247 (1910).ADSMATHCrossRefGoogle Scholar
  20. [20]
    P.H. Hugoniot, J. École Polytech. (1887–1889), 57th and 58th cahiers.Google Scholar
  21. [21]
    D.R. White, Phys. Fluids 4, p. 465 (1961).ADSMATHCrossRefGoogle Scholar
  22. [22]
    R. Engelke and W.C. Davis, Los Alamos National Laboratory, unpublished data (1972).Google Scholar
  23. [23]
    W.W. Wood and J.G. Kirkwood, J. Appl. Phys. 25, p. 395 (1957).ADSCrossRefGoogle Scholar
  24. [24]
    N.R. Greiner and N. Blais, in Proceedings of the Ninth Symposium (Intl.) on Detonation, Office of Naval Research OCNR 113291-7, pp. 953–961 (1989).Google Scholar
  25. [25]
    N.R. Greiner, H.A. Fry, N.C. Blais, and R. Engelke, in Proceedings of the Tenth International Detonation Symposium, Office of Naval Research ONR 33395-12, pp. 563–569 (1993).Google Scholar
  26. [26]
    R. Engelke and N.C. Blais, J. Chem. Phys. 101, p. 10961 (1994).ADSCrossRefGoogle Scholar
  27. [27]
    R. Engelke, D.R. Pettit, and S.A. Sheffield, J. Phys. Chem. A 101, p. 1696 (1997).CrossRefGoogle Scholar
  28. [28]
    C.S. Yoo and N.C. Holmes, in High Pressure Science and Technology—1983 (ed. S.O. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross), American Institute of Physics, p. 1567 (1993).Google Scholar
  29. [29]
    G.I. Taylor, Proc. Roy. Soc. A CC, pp. 235–247 (1950).Google Scholar
  30. [30]
    C.L. Mader, Numerical Modeling of Detonations, University of California Press, Berkeley (1979).MATHGoogle Scholar
  31. [31]
    F.H. Ree and M. Van Thiel, in Proceedings of the Eight Symposium (Intl.) on Detonation, NSWC MP 86-194 U.S. GPO, Washington, DC, pp. 501–512 (1985).Google Scholar
  32. [32]
    E.L. Lee, H.C. Hornig, and J.W. Kury, Adiabatic Expansion of High Explosive Detonation Products, technical report UCRL-50422, Lawrence Livermore National Laboratory (May 1968).Google Scholar
  33. [33]
    J.N. Fritz, R.S. Hixson, M.S. Shaw, C.E. Morris, and R.G. McQueen, J. Appl. Phys. 80, p. 6129 (1996).ADSCrossRefGoogle Scholar
  34. [34]
    C.L. Mader and C.A. Forest, Two-Dimensional Homogeneous and Heterogeneous Detonation Wave Propagation, Los Alamos Scientific Laboratory Report LA-6259, p. 60 (App. C) (June 1976). See also C.A. Forest, Burning and Detonation, Los Alamos Scientific Laboratory Report LA-7245, p. 22 (App. B) (July 1978).Google Scholar
  35. [35]
    J. Wackerle, R.L. Rabie, M.J. Ginsberg, and A.B. Anderson, in Proceedings of the Symposium on High Dynamic Pressures, Paris, France, p. 127 (1978).Google Scholar
  36. [36]
    E.L. Lee and C.M. Tarver, Phys. Fluids 23, p. 2362 (1980).ADSCrossRefGoogle Scholar
  37. [37]
    J.N. Johnson, P.K. Tang, and C.A. Forest, J. Appl. Phys. 57, p. 4323 (1985).ADSCrossRefGoogle Scholar
  38. [38]
    M.L. Hobbs and M.R. Baer, in Proceedings of the Tenth International Detonation Symposium, Office of Naval Research ONR 33395-12, pp. 409–418 (1993); M.L. Hobbs and M.R. Baer, Shock Waves 2, p. 177 (1992).Google Scholar
  39. [39]
    J.W. Nunziato, M.E. Kipp, R.E. Setchell, and E.K. Walsh, Shock Initiation in Heterogeneous Explosives, technical report SAND81-2173, Sandia Natl. Labs., Albuquerque, NM (1982).Google Scholar
  40. [40]
    E.F. Gittings, in Proceedings of the Fourth Symposium (Intl.) on Detonation, Office of Naval Research Department of the Navy Report ACR-126, Washington D.C., pp. 373–380 (1965).Google Scholar
  41. [41]
    F.E. Walker and R.J. Wasley, Explosivstoffe 1, p. 9 (1969).Google Scholar
  42. [42]
    A.W. Campbell, W.C. Davis, and J.R. Travis, Phys. Fluids 4, p. 498, (1961).ADSCrossRefGoogle Scholar
  43. [43]
    R.F. Chaiken, The Kinetic Theory of Detonation of High Explosives, M.S. Thesis, Polytechnic Institute of Brooklyn (1958).Google Scholar
  44. [44]
    D.A. Frank-Kamenetskii, Diffusion and Heat Exchange in Chemical Kinetics, Princeton University Press, Princeton, NJ (1955).Google Scholar
  45. [45]
    S.A. Sheffield, R. Engelke, and R.R. Alcon, in Proceedings of the Ninth Symposium (Intl.) on Detonation, Office of Naval Research OCNR 113291–7, pp. 39–49 (1989).Google Scholar
  46. [46]
    A.W. Campbell, W.C. Davis, J.B. Ramsay, and J.R. Travis, Phys. Fluids 4, p. 511 (1961).ADSCrossRefGoogle Scholar
  47. [47]
    R. Engelke, Phys. Fluids 22, p. 1623 (1979); and 23, p. 875 (1980).ADSCrossRefGoogle Scholar
  48. [48]
    R. Engelke and J.B. Bdzil, Phys. Fluids 26, p. 1210 (1983).ADSCrossRefGoogle Scholar
  49. [49]
    R.L. Gustavsen, S.A. Sheffield, and R.R. Alcon, Los Alamos National Laboratory, unpublished data (1996).Google Scholar
  50. [50]
    H. Moulard, in Proceedings of the Ninth Symposium (Intl.) on Detonation, Office of Naval Research OCNR 113291–7, pp. 18–24 (1989).Google Scholar
  51. [51]
    A.W. Campbell and B.G. Craig, Los Alamos National Laboratory unpublished data.Google Scholar
  52. [52]
    S.A. Sheffield, R.L. Gustavsen, and M.U. Anderson, in High-Pressure Shock Compression of Solids IV (ed. L. Davison, Y. Horie, and M. Shahinpoor), Springer-Verlag, New York (1997).Google Scholar
  53. [53]
    Section on DDT, in Proceedings of the Ninth Symposium (Intl.) on Detonation, Office of Naval Research OCNR 113291–7, pp. 259–376 (1989).Google Scholar
  54. [54]
    J.M. McAfee, B.W. Asay, and A.W. Campbell, in Proceedings of the Ninth Symposium (Intl.) on Detonation, Office of Naval Research OCNR 113291–7, pp. 265–279 (1989).Google Scholar
  55. [55]
    M.R. Baer and J.W. Nunziato, in Proceedings of the Ninth Symposium (Intl.) on Detonation, Office of Naval Research OCNR 113291–7, pp. 293–305 (1989).Google Scholar
  56. [56]
    M.R. Baer, in High-Pressure Shock Compression of Solids IV (ed. L. Davison, Y. Horie, and M. Shahinpoor), Springer-Verlag, New York (1997).Google Scholar
  57. [57]
    A.K. Kapila, S.F. Son, J.B. Bdzil, R. Menikoff, and D.S. Stewart, submitted to Phys. Fluids, July 1996.Google Scholar
  58. [58]
    J.B. Bdzil, S.F. Son, R. Menikoff, A.K. Kapila, and D.S. Stewart, in preparation for submittal to Phys. Fluids, 1997.Google Scholar
  59. [59]
    R.W. Watson, C.R. Summers, F.C. Gibson, and R.W. Van Dolah, in Proceedings of the Fourth Symposium (Intl.) on Detonation, Office of Naval Research ACR-126, pp. 117–125 (1965).Google Scholar
  60. [60]
    David Kennedy, ICI Australia, personal communication, 1995.Google Scholar
  61. [61]
    G.A. Leiper and J. Cooper, in Proceedings of the Tenth International Detonation Symposium, Office of Naval Research ONR 33395-12, pp. 267–275 (1993).Google Scholar
  62. [62]
    D.L. Kennedy and D.A. Jones, in Proceedings of the Tenth International Detonation Symposium, Office of Naval Research ONR 33395-12, pp. 665–674 (1993).Google Scholar
  63. [63]
    J. Forbes, Lawrence Livermore National Laboratory, personal communication, January 1997.Google Scholar
  64. [64]
    R. Bernecker, Naval Surface Warfare Center, Indian Head, Maryland, personal communication, January 1997.Google Scholar
  65. [65]
    J.B. Bdzil, J. Fluid Mech. 108, p. 195 (1981).ADSMATHCrossRefGoogle Scholar
  66. [66]
    S.A. Sheffield, Bull. Am. Phy. Soc. 35, p. 697 (1990); see also S.A. Sheffield, R.L. Gustavsen, and R.R. Alcon, in Shock Waves in Condensed Matter—1995 (ed. S.C. Schmidt and W.C. Tao), American Institute of Physics, New York, p. 771 (1996).Google Scholar
  67. [67]
    B.M. Dobratz and P.C. Crawford, LLNL Explosives Handbook, UCRL-52997, Lawrence Livermore National Laboratory, Livermore, CA (1985).Google Scholar
  68. [68]
    R. Meyer, Explosives, YCH Publishers, New York (1987).Google Scholar
  69. [69]
    R. Engelke and J.R. Stine, J. Phys. Chem. 94, p. 5689 (1990).CrossRefGoogle Scholar
  70. [70]
    T.R. Gibbs and A. Popolato, LASL Explosive Property Data, University of California Press, Berkeley (1980).Google Scholar
  71. [71]
    A.F. Belyaev and R.Kh. Kurbangalina, Russ. J. Phys. Chem. 34, p. 285 (1960); see also B.M. Dobratz and P.C. Crawford, LLNL Explosives Handbook, UCRL-52997, Lawrence Livermore National Laboratory, Livermore, CA, p. 8–34 (1985).Google Scholar
  72. [72]
    L.C. Smith, LANL Explosives Orientation Course: Sensitivity and Sensitivity Tests, Los Alamos National Laboratory Report LA-11010-MS (1987).Google Scholar
  73. [73]
    Proceedings of the First through the Tenth (International) Symposia on Detonation, sponsored by the Office of Naval Research, U.S. Government Printing Office, Washington, DC (1951 to 1993).Google Scholar
  74. [74]
    J.E. Vorthman and J. Wackerle, in Shock Waves in Condensed Matter—1983 (ed. J.R. Asay, R.A. Graham, and G.K. Straub), Elsevier Science Publishers, Amsterdam, p. 613 (1984).Google Scholar
  75. [75]
    L.M. Barker and R.E. Hollenbach, Rev. Sci Instrum. 36, p. 1617 (1965).ADSCrossRefGoogle Scholar
  76. [76]
    M. Durand, P. Laharrague, P. Lalle, A. Le Bihan, J. Morvan, and H. Pujols, Rev. Sci. Instrum. 48, pp. 275–278 (1977)ADSCrossRefGoogle Scholar
  77. [77]
    D.D. Bloomquist and S.A. Sheffield, J. Appl. Phys. 54, p. 1717 (1983).ADSCrossRefGoogle Scholar
  78. [78]
    W.F. Hemsing, Rev. Sci. Instrum. 50, p. 73 (1979).ADSCrossRefGoogle Scholar
  79. [79]
    W.F. Hemsing, in Proceedings of the Eighth Symposium (Intl.) on Detonation, Naval Surface Weapons Center NSWC MP 86-194, pp. 468–472 (1985).Google Scholar
  80. [80]
    D. Goosman, G. Avara, L. Steinmetz, C. Lai, and S. Perry, in Proceedings of the 22-nd International Congress on High Speed Photography and Photonics, SPIE Vol. 2869, SPIE Press, Bellingham, WA (1997).Google Scholar
  81. [81]
    S.A. Sheffield, R. Engelke, and R.R. Alcon, Los Alamos National Laboratory, unpublished data.Google Scholar
  82. [82]
    S.A. Sheffield, D.D. Bloomquist, and C.M. Tarver, J. Chem. Phys. 80, p. 3831 (1984).ADSCrossRefGoogle Scholar
  83. [83]
    J.B. Ramsay and A. Popolato, in Proceedings of the Fourth Symposium (Intl.) on Detonation, Office of Naval Research ACR-126, p. 233 (1965).Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1998

Authors and Affiliations

  • Ray Engelke
  • Stephen A. Sheffield

There are no affiliations available

Personalised recommendations