Skip to main content

Effects of Shock Compression on Ceramic Materials

  • Chapter

Part of the book series: High-Pressure Shock Compression of Condensed Matter ((SHOCKWAVE))

Abstract

Shock wave propagation in a solid can generate conditions of ultra-high pressure (stress) sufficient to induce changes in the elastic rigidity and the crystal and electronic structures of the material. Hugoniot data are even now the most reliable (in situ and macroscopic) experimental information obtainable from shock compression research on solids. We can directly and precisely determine the pressure (stress)—density relation of condensed matter by measurement of Hugoniot parameters (shock velocity and particle velocity), because these parameters are comparable to ultrasonic data: derivative values of pressure with volume. From these data, the dynamic strength, phase transitions, equation of state (EOS), etc. can be studied. However, these experiments provide little information on microscopic effects because it is very difficult to perform in situ microscopic observations. This is due mainly to the very short duration of the shock process, during which the entropy increases and a hightemperature, compressed state that is heterogeneously deformed appears. However, shock compression research has long occupied an important position in the field of high-pressure science due to the aforementioned features, although its monopoly in generating pressures in the 100 GPa range has recently been lost due to development of diamond-anvil cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.P. Marsh (ed.), LASL Shock Hugoniot Data, University of California Press, Berkeley (1980).

    Google Scholar 

  2. M. van Thiel (ed.), Compendium of Shock Wave Data, Vol. 1, technical report UCRL-50108 (Vol. 1), Lawrence Radiation Laboratory, Livermore, California (1966).

    Google Scholar 

  3. R.G. McQueen, S.P. Marsh, J.W. Taylor, J.N. Fritz, and W.J. Carter, in High-Velocity Impact Phenomena (ed. R. Kinslow), Academic Press, New York, p. 244 (1970).

    Google Scholar 

  4. L.V. Al’tshuler, Sov. Phys. Usp. 8, p. 52 (1965).

    Article  ADS  Google Scholar 

  5. T.J. Ahrens and V.G. Gregson, Jr., J. Geophys. Res. 69, p. 4839 (1964).

    Article  ADS  Google Scholar 

  6. R.G. McQueen, S.P. Marsh, and J.N. Fritz, J. Geophys. Res. 72, p. 4999 (1967).

    Article  ADS  Google Scholar 

  7. T. Mashimo, A. Nakamura, and S. Hamada, in SPIE-1801, p. 170 (1993).

    Google Scholar 

  8. A. Nakamura and T. Mashimo, Jpn. J. Appl. Phys. 32, p. 4785 (1993).

    Article  ADS  Google Scholar 

  9. T. Mashimo and K. Nagayama, Jpn. J. Appl. Phys. 25, Suppl. 25–1, pp. 103–105 (1986).

    Google Scholar 

  10. T. Mashimo, S. Ozaki, and K. Nagayama, Rev. Sci. Instrum. 55, p. 226 (1984)

    Article  ADS  Google Scholar 

  11. T. Mashimo, in Shock Wave in Materials Science (ed. A. Sawaoka), Springer-Verlag, Tokyo, pp.113–144 (1993).

    Google Scholar 

  12. R.A. Graham and W.P. Brooks, Phys. Chem. Solids 32, p. 2311 (1971).

    Article  ADS  Google Scholar 

  13. W.H. Gust and E.B. Royce, J. Appl. Phys. 42, p. 276 (1971).

    Article  ADS  Google Scholar 

  14. T.J. Ahrens, W.H. Gust, and E.B. Royce, J. Appl. Phys. 39, p. 4610 (1968).

    Article  ADS  Google Scholar 

  15. T. Mashimo, Y. Hanaoka, and K. Nagayama, J. Appl. Phys. 63, pp. 327–336 (1988).

    Article  ADS  Google Scholar 

  16. T. Mashimo, in Shock Waves in Condensed Matter—1987 (ed. S.C. Schmidt and N.C. Holmes), North-Holland, Amsterdam, p. 285 (1988).

    Google Scholar 

  17. T. Mashimo, unpublished data.

    Google Scholar 

  18. T. Sato and S. Akimoto, J. Appl. Phys. 50, p. 5285 (1979).

    Article  ADS  Google Scholar 

  19. T. Mashimo, unpublished data.

    Google Scholar 

  20. T. Mashimo, K. Nagayama, and A. Sawaoka, J. Appl. Phys. 54, p. 5043 (1983).

    Article  ADS  Google Scholar 

  21. T. Mashimo, K. Nagayama, and A. Sawaoka, in Proc. 8th AIRAPT High Pressure Conf., p. 239 (1982).

    Google Scholar 

  22. Y. Syono, K. Kusaba, M. Kikuchi, and K. Fukuoka, in High-Pressure Research in Mineral Physics (ed. H. Manghanani and Y. Syono), p. 385 (1987).

    Google Scholar 

  23. K. Kusaba, M. Kikuchi, K. Fukuoka, and Y. Syono, Phys. Chem. Miner. 154, p. 238 (1988).

    Article  ADS  Google Scholar 

  24. D.E. Grady, R.E. Hollenbach, and K.W. Schuler, J. Geophys. Res. 83, p. 2839 (1978).

    Article  ADS  Google Scholar 

  25. R.G. McQueen, J.C. Jamieson, and S.P. Marsh, Science 155, p. 140 (1960).

    Google Scholar 

  26. L.V. Al’tshuler, M.A. Podurets, G.V. Simakov, and R.F. Trunin, Sov. Phys. Solid State 15, p. 969 (1973).

    Google Scholar 

  27. R.C. Garvie, R.N. Hannink, and R.T. Pasoe, Nature 256, p. 713 (1975).

    Article  Google Scholar 

  28. O. Ohtaka, S. Kume, and E. Ito, J. Am. Ceram. Soc. 71, p. C–448 (1988).

    Google Scholar 

  29. H. Arashi, T. Yagi, S. Akimoto, and Y. Kudoh, Phys. Rev. B41, p. 4309 (1990).

    ADS  Google Scholar 

  30. J.M. Leger, R.F. Tomaszewski, A. Atouf, and A.S. Pereira, Phys. Rev. B47, p. 14075 (1993).

    ADS  Google Scholar 

  31. T. Mashimo, K. Nagayama, and A. Sawaoka, Phys. Chem. Miner. 9, p. 237 (1983).

    Article  ADS  Google Scholar 

  32. T. Mashimo, A. Nakamura, K. Kodama, K. Kusaba, K. Fukuoka, and Y. Syono, J. Appl. Phys. 77, p. 5060 (1995).

    Article  ADS  Google Scholar 

  33. T. Mashimo, A. Nakamura, M. Nishida, S. Matsuzaki, K. Kusaba, K. Fukuoka, and Y. Syono, J. Appl. Phys. 77, p. 5069. (1995).

    Article  ADS  Google Scholar 

  34. J.M. Leger, A. Atouf, P.E. Tomaszewski, and A.S. Pereira, Phys. Rev. B48, p. 93 (1993).

    ADS  Google Scholar 

  35. D.E. Grady and T. Mashimo, J. Appl. Phys. 71, p. 4868 (1992).

    Article  ADS  Google Scholar 

  36. T. Mashimo, J. Appl. Phys. 63, p. 4747 (1988).

    Article  ADS  Google Scholar 

  37. T. Ogata, M. Kihara, K. Nakamura, and K. Kobayashi, J. Ceram. Soc. Jpn. 96, p. 310–316 (1988).

    Article  Google Scholar 

  38. H. Vollstadt, E. Ito, M. Akaishi, S. Akimoto, and O. Fukunaga, Proc. Jpn. Acad. 66, Ser B, p. 7 (1990).

    Article  Google Scholar 

  39. I. Gorczyca, N.E. Christensen, P. Perlin, I. Grzegory, J. Jun, and M. Boekowski, Solid State Commun. 79, p. 1033 (1991).

    Article  ADS  Google Scholar 

  40. M. Ueno, A. Onodera, O. Shimomura, and K. Takemura, Phys. Rev. B45, p. 10123 (1992).

    ADS  Google Scholar 

  41. A. Nakamura and T. Mashimo, in High-Pressure Science and Technology—1993 (ed. S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross), American Institute of Physics, New York, p. 303 (1995).

    Google Scholar 

  42. Z. Rosenberg, N.S. Brar, and S.J. Bless, J. Appl. Phys. 70, p. 167 (1991).

    Article  ADS  Google Scholar 

  43. D.E. Grady, Private communication.

    Google Scholar 

  44. M.E. Kipp and D.E. Grady, in Proc. EURO DYMAT 94, in press (1995).

    Google Scholar 

  45. T. Mashimo, unpublished data.

    Google Scholar 

  46. A. Yamakawa, T. Nishioka, M. Miyake, K. Wakamori, A. Nakamura, and T. Mashimo, J. Ceram. Soc. Jpn. Int. Edition 101, p. 1322 (1993).

    Google Scholar 

  47. T. Mashimo, A. Nakamura, A. Yamakawa, T. Nishioka, and M. Miyake, in Dynamic Plasticity and Structural Behavior, p. 547 (1995).

    Google Scholar 

  48. N.S. Brar, Z. Rosenberg, and S.J. Bless, J. Appl. Phys. 69, p. 7890 (1991).

    Article  ADS  Google Scholar 

  49. M.E. Kipp and D.E. Grady, in Shock Compression of Condensed Matter—1989 (ed. S.C. Schmidt, J.N. Johnson, and L.W. Davison), North-Holland, Amsterdam, p. 377 (1990).

    Google Scholar 

  50. T. Mashimo, M. Uehino, and A. Nakamura, in Proc. 20th Internat. Conf. High-Pressure Photograph & Photonics, SPIE Vol. 2513, SPIE Press, Bellingham, WA, p. 792 (1995).

    Google Scholar 

  51. T. Mashimo and M. Uchino, J. Appl. Phys. 81, p. 7064 (1997).

    Article  ADS  Google Scholar 

  52. F.W. Neilson, Bull. Am. Phys. Soc. 2, p. 302 (1957).

    Google Scholar 

  53. C.E. Reynolds and G.E. Seay, J. Appl. Phys. 32, p. 1401 (1961).

    Article  ADS  Google Scholar 

  54. W.J. Halpin, J Appl. Phys. 37, p. 153 (1966).

    Article  ADS  Google Scholar 

  55. P.C. Lysne, J. Appl. Phys. 48, p. 1024 (1977).

    Article  ADS  Google Scholar 

  56. T. Mashimo, K. Toda, K. Nagayama, T. Goto, and Y. Syono, J. Appl. Phys. 59, p. 748 (1986).

    Article  ADS  Google Scholar 

  57. S. Minomura, M. Tanaka, B. Okai, and H. Nagasaki, Jpn. J. Appl. Phys. 28, Suppl., p. 404 (1970).

    Google Scholar 

  58. L.E. Pope and J.N. Johnson, J. Appl. Phys. 46, p. 720 (1975).

    Article  ADS  Google Scholar 

  59. L. Davison, A.L. Stevens, and M.E. Kipp, J. Mech. Phys. Solids 25, p. 11 (1974).

    Article  Google Scholar 

  60. S. Mnshall, J. Appl. Phys. 26, p. 463 (1955).

    Article  ADS  Google Scholar 

  61. L.M. Barker and R.E. Hollenbaeh, J. Appl. Phys. 45, p. 4872 (1974).

    Article  ADS  Google Scholar 

  62. O.E. Jones and R.A. Graham, in Accurate Characterization of the High-Pressure Environment (ed. E.C. Lloyd), U. S. National Bureau of Standards, Washington, DC, p. 229 (1971).

    Google Scholar 

  63. P.P. Gillis, K.G. Hoge, and R.J. Wasley, J. Appl. Phys. 41, p. 2145 (1970).

    Google Scholar 

  64. J.R. Asay, L.C. Chhabildas, and D.P. Dandekar, J. Appl. Phys. 51, p. 4774 (1980).

    Article  ADS  Google Scholar 

  65. Y.M. Gupta, G.E. Duvall, and G.R. Fowles, J. Appl. Phys. 46, p. 532 (1975).

    Article  ADS  Google Scholar 

  66. J.R. Asay, D.L. Hicks, and D.B. Holdridge, J. Appl. Phys. 46, p. 4316 (1975).

    Article  ADS  Google Scholar 

  67. W.J. Murri and G.D. Anderson, J. Appl. Phys. 41, p. 3521 (1970).

    Article  ADS  Google Scholar 

  68. W.H. Gust and E.B. Royce, J. Appl. Phys. 42, p. 1897 (1971).

    Article  ADS  Google Scholar 

  69. T. Goto, T. Sato, and Y. Syono, Jpn. J. Appl. Phys. 21, p. L369 (1982).

    Article  ADS  Google Scholar 

  70. R.A. Graham, O.E. Jones, and J.R. Holland, J. Phys. Chem. Solids 27, p. 1519 (1960).

    Article  Google Scholar 

  71. W.H. Gust and E.B. Royce, J. Appl. Phys. 43, p. 4439 (1972).

    Article  ADS  Google Scholar 

  72. T. Goto and Y. Syono, in Shock Waves in Condensed Matter—1981 (ed. W.J. Nellis, L. Seaman, and R.A. Graham), American Institute of Physics, New York, p. 320 (1982).

    Google Scholar 

  73. T.J. Ahrens, J. Appl. Phys. 37, p. 2532 (1966).

    Article  ADS  Google Scholar 

  74. T. Goto, J. Sato, and Y. Syono, in High Pressure Research: Application in Geophysics (ed. M.H. Manghnani and S. Akimoto), p. 595 (1982).

    Google Scholar 

  75. J. Wackerle, J. Appl. Phys. 33, p. 922 (1962).

    Article  ADS  Google Scholar 

  76. Y. Syono and T. Goto, in High Pressure Research: Application in Geophysics (ed. M.H. Manghnani and S. Akimoto), p. 563 (1982).

    Google Scholar 

  77. T. Goto and Y. Syono, J. Appl. Phys. 58, p. 2548 (1985).

    Article  ADS  Google Scholar 

  78. W.H. Gust, A.C. Holt, and E.B. Royce, J. Appl. Phys. 44, p. 550 (1973).

    Article  ADS  Google Scholar 

  79. D.E. Grady, J. Geophys. Res. 85, p. 913 (1980).

    Article  ADS  Google Scholar 

  80. T. Mashimo, in High-Pressure Science and Technology—1993 (ed. J.R. Asay, R.A. Graham, and G.K. Straub), American Institute of Physics, New York, p. 757 (1995).

    Google Scholar 

  81. J.W. Taylor and M.H. Rice, J. Appl. Phys. 34, p. 364 (1963).

    Article  ADS  Google Scholar 

  82. J.E. Flinn, G.E. Duvall, G.R. Fowles, and R.F. Tinder, J. Appl. Phys. 46, p. 3752 (1975).

    Article  ADS  Google Scholar 

  83. P. Kumar and R.J. Clifton, J. Appl. Phys. 50, p. 4747 (1979).

    Article  ADS  Google Scholar 

  84. D. Stöffler, Fortschr. Miner. 49, p. 50 (1972).

    Google Scholar 

  85. A.V. Ananin, O.N. Breusov, A.N. Dremin, S.V. Pershin, and V.F. Tatsii, Combust. Expl. Shock Waves 10, p. 426 (1974).

    Google Scholar 

  86. W.F. Müller and U. Hornemann, Earth Planet Sci. Lett. 7, p. 251 (1969).

    Article  ADS  Google Scholar 

  87. W.U. Reimold and D. Stöffler, in Proc. 9th. Lunar Planet Sci. Conf. p. 2805 (1978).

    Google Scholar 

  88. M.J. Klein, Phil. Mag. 12, p. 735 (1965).

    Article  ADS  Google Scholar 

  89. J.F. Bauer, in Proc. 10th Lunar Planet Sci. Conf., p. 2573 (1979).

    Google Scholar 

  90. H. Mori, J. Jpn. Crystallogr. Soc. 27, p. 179 (1985).

    Google Scholar 

  91. P.J. Brannon, C.H. Konrad, R.W. Morris, E.D. Jones, and J.R. Asay, technical report SAND82-2469, Sandia National Laboratories, Albuquerque, New Mexico (1983).

    Google Scholar 

  92. A.J. Granz, Phys. Chem. Miner. 16, p. 221 (1988).

    ADS  Google Scholar 

  93. W. Engelhardt and D. Stöffler, in Shock Metamorphism of Natural Minerals (ed. B. French and N. Short), Mono Press, Baltimore, p. 159 (1968).

    Google Scholar 

  94. R. Jeanloz, T.J. Ahrens, J.S. Lally, G.L. Nord. Jr., J. M. Christie, and A.H. Heuer, Science 197, p. 457 (1972).

    Article  ADS  Google Scholar 

  95. A.G. Bogdanov, S.A. Popov, and V.S. Rundenko, Acad. Sci. USSR Proc. Chem. Sect. 201, p. 1011 (1971).

    Google Scholar 

  96. P.S. DeCarli and D.J. Milton, Science 147, p. 144 (1965).

    Article  ADS  Google Scholar 

  97. T. Mashimo, M. Kodama, and K. Nagayama, Adv. Ceram. 24, p. 329 (1988).

    Google Scholar 

  98. L. Davison and R.A. Graham, Phys. Rept. 55, p. 255 (1979).

    Article  ADS  Google Scholar 

  99. T. Mashimo, in Shock Waves in Condensed Matter—1987 (ed. S.C. Schmidt and N.C. Holmes), North-Holland, Amsterdam, p. 285 (1988).

    Google Scholar 

  100. H. Sugiura, K. Kondo, and A. Sawaoka, J. Appl. Phys. 52, p. 3375 (1981).

    Article  ADS  Google Scholar 

  101. S.J. Bless, N.S. Brar, and A. Rozenberg, in Shock Waves in Condensed Matter—1987 (ed. S.C. Schmidt and N.C. Holmes), North-Holland, Amsterdam, p. 309 (1988).

    Google Scholar 

  102. P.F. Chartagnac, J. Appl. Phys. 53, p. 948 (1982).

    Article  ADS  Google Scholar 

  103. G.I. Kanel, S.V. Razorenov, and V.E. Fortov, in Shock Compression of Condensed Matter—1991 (ed. S.C. Schmidt, R.D. Dick, J.W. Forbes, and D.J. Tasker), North-Holland, Amsterdam, p. 451 (1992).

    Google Scholar 

  104. N.S. Brar, S.J. Bless, and Z. Rosenberg, Appl. Phys. Lett. 59, p. 3396 (1991).

    Article  ADS  Google Scholar 

  105. Sumitomo Electric Industries Co. Ltd., Private communication.

    Google Scholar 

  106. A. Horiguchi, F. Ueno, and A. Tsuge, Toshiba Rev. 44, p. 616 (1986).

    Google Scholar 

  107. G.E. Duvall and R.A. Graham, Rev. Mod. Phys. 49, p. 523 (1977).

    Article  ADS  Google Scholar 

  108. Y. Syono, in High Pressure Explosive Processing of Ceramics (ed. R.A. Graham and A.B. Sawaoka), Tera Tech, Switzerland, pp. 479–400 (1987).

    Google Scholar 

  109. W.H. Gust and D.A. Young, in High Pressure Science & Technology (ed. K.D. Timmerhaus and M.S. Barber), Plenum, p. 944 (1979).

    Google Scholar 

  110. T. Goto and Y. Syono, J. Appl. Phys. 58, p. 2548 (1985).

    Article  ADS  Google Scholar 

  111. L.V. Al’tshuler and A.A. Bakanova, Sov. Phys. Usp. 11, p. 678 (1969).

    Article  ADS  Google Scholar 

  112. G.W. Anderson and F.W. Neilson, Bull Am. Phys. Soc. 2, p. 302 (1957).

    Google Scholar 

  113. D.E. Grady, G.E. Duvall, and E.B. Royce, J. Appl. Phys. 43, p. 1948 (1972).

    Article  ADS  Google Scholar 

  114. D.A. King and T.J. Ahrens, J. Geophys. Res. 81, p. 931 (1976).

    Article  ADS  Google Scholar 

  115. T. Sekine, Private communication.

    Google Scholar 

  116. O. Mishima, L.D. Calvert, and E. Whalley, Nature 310, p. 393 (1984).

    Article  ADS  Google Scholar 

  117. M. Maden, P. Gilletm, C. Jullien, and G.D. Price, Phys. Chem. Miner. 18, p. 7 (1991).

    ADS  Google Scholar 

  118. M.B. Kruger and R. Jeanloz, Science 249, p. 647 (1990).

    Article  ADS  Google Scholar 

  119. P.S. DeCarli and J.C. Jamieson, J. Chem. Phys. 31, p. 1675 (1959).

    Article  ADS  Google Scholar 

  120. T. Mashimo, K. Nishii, T. Soma, and A. Sawaoka, Phys. Chem. Miner. 5, p. 367 (1980).

    Article  ADS  Google Scholar 

  121. D. Stöffler and U. Hornemann, Meteorite 7, p. 371 (1972).

    ADS  Google Scholar 

  122. R.V. Gibbons and T.J. Ahrens, Phys. Chem. Miner. 1, p. 95 (1977).

    Article  ADS  Google Scholar 

  123. M. Kimura, T. Goto, and Y. Syono, Contr. Miner. Petrol. 61, p. 299 (1977).

    Article  ADS  Google Scholar 

  124. M. Okuno, F. Marumo, and Y. Syono, Miner. J. 12, p. 197 (1985).

    Article  Google Scholar 

  125. N. Suresh, G. Satish, G.C. Gupta, S.K.S. Sangeeta, and S.C. Sabharwal, J. Appl. Phys. 76, p. 1530 (1994).

    Article  ADS  Google Scholar 

  126. D.J. Erskine and W.J. Nellis, Nature 349, p. 317 (1991).

    Article  ADS  Google Scholar 

  127. S. Kawasaki, T. Yamanaka, S. Kume, and T. Ashida, Solid State Commun. 76, p. 527 (1990).

    Article  ADS  Google Scholar 

  128. L.C. Chhabildas and J.R. Asay, J. Appl. Phys. 50, p. 2749 (1979).

    Article  ADS  Google Scholar 

  129. J.W. Swegle and D.E. Grady, J. Appl. Phys. 58, p. 692 (1985).

    Article  ADS  Google Scholar 

  130. A.S. Abou-Sayed, R. J. Clifton, and L. Hermann, Exp. Mech. 6, p. 127 (1976).

    Article  Google Scholar 

  131. Y.M. Gupta, Appl. Phys. Lett. 29, p. 694 (1976).

    Article  ADS  Google Scholar 

  132. L.C. Chhabildas and J.W. Swegle, J. Appl. Phys. 51, p. 4799 (1980).

    Article  ADS  Google Scholar 

  133. L.M. Barker and D.D. Scott, technical report SAND84-0432, Sandia National Laboratories, Albuquerque, New Mexico (1984).

    Google Scholar 

  134. J. Stainberg, J. Appl. Phys. 65, p. 3417 (1988).

    Article  ADS  Google Scholar 

  135. F.L. Addessio and J.N. Johnson, J. Appl. Phys. 67, p. 3275 (1990).

    Article  ADS  Google Scholar 

  136. D.H. Robertson, D.W. Brenner, and C.T. White, Phys. Rev. Lett. 25, p. 3132 (1991).

    Article  ADS  Google Scholar 

  137. N. J. Wagner, B.L. Holian, and A.F. Voter, Phys. Rev. A45, p. 8457 (1992).

    ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Mashimo, T. (1998). Effects of Shock Compression on Ceramic Materials. In: Davison, L., Shahinpoor, M. (eds) High-Pressure Shock Compression of Solids III. High-Pressure Shock Compression of Condensed Matter. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2194-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2194-4_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7454-4

  • Online ISBN: 978-1-4612-2194-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics