Advertisement

Effects of Shock Compression on Ceramic Materials

  • Tsutomu Mashimo
Part of the High-Pressure Shock Compression of Condensed Matter book series (SHOCKWAVE)

Abstract

Shock wave propagation in a solid can generate conditions of ultra-high pressure (stress) sufficient to induce changes in the elastic rigidity and the crystal and electronic structures of the material. Hugoniot data are even now the most reliable (in situ and macroscopic) experimental information obtainable from shock compression research on solids. We can directly and precisely determine the pressure (stress)—density relation of condensed matter by measurement of Hugoniot parameters (shock velocity and particle velocity), because these parameters are comparable to ultrasonic data: derivative values of pressure with volume. From these data, the dynamic strength, phase transitions, equation of state (EOS), etc. can be studied. However, these experiments provide little information on microscopic effects because it is very difficult to perform in situ microscopic observations. This is due mainly to the very short duration of the shock process, during which the entropy increases and a hightemperature, compressed state that is heterogeneously deformed appears. However, shock compression research has long occupied an important position in the field of high-pressure science due to the aforementioned features, although its monopoly in generating pressures in the 100 GPa range has recently been lost due to development of diamond-anvil cells.

Keywords

Shock Wave Shear Strength Ceramic Material Shock Compression Phase Transition Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S.P. Marsh (ed.), LASL Shock Hugoniot Data, University of California Press, Berkeley (1980).Google Scholar
  2. [2]
    M. van Thiel (ed.), Compendium of Shock Wave Data, Vol. 1, technical report UCRL-50108 (Vol. 1), Lawrence Radiation Laboratory, Livermore, California (1966).Google Scholar
  3. [3]
    R.G. McQueen, S.P. Marsh, J.W. Taylor, J.N. Fritz, and W.J. Carter, in High-Velocity Impact Phenomena (ed. R. Kinslow), Academic Press, New York, p. 244 (1970).Google Scholar
  4. [4]
    L.V. Al’tshuler, Sov. Phys. Usp. 8, p. 52 (1965).ADSCrossRefGoogle Scholar
  5. [5]
    T.J. Ahrens and V.G. Gregson, Jr., J. Geophys. Res. 69, p. 4839 (1964).ADSCrossRefGoogle Scholar
  6. [6]
    R.G. McQueen, S.P. Marsh, and J.N. Fritz, J. Geophys. Res. 72, p. 4999 (1967).ADSCrossRefGoogle Scholar
  7. [7]
    T. Mashimo, A. Nakamura, and S. Hamada, in SPIE-1801, p. 170 (1993).Google Scholar
  8. [8]
    A. Nakamura and T. Mashimo, Jpn. J. Appl. Phys. 32, p. 4785 (1993).ADSCrossRefGoogle Scholar
  9. [9]
    T. Mashimo and K. Nagayama, Jpn. J. Appl. Phys. 25, Suppl. 25–1, pp. 103–105 (1986).Google Scholar
  10. [10]
    T. Mashimo, S. Ozaki, and K. Nagayama, Rev. Sci. Instrum. 55, p. 226 (1984)ADSCrossRefGoogle Scholar
  11. [11]
    T. Mashimo, in Shock Wave in Materials Science (ed. A. Sawaoka), Springer-Verlag, Tokyo, pp.113–144 (1993).Google Scholar
  12. [12]
    R.A. Graham and W.P. Brooks, Phys. Chem. Solids 32, p. 2311 (1971).ADSCrossRefGoogle Scholar
  13. [13]
    W.H. Gust and E.B. Royce, J. Appl. Phys. 42, p. 276 (1971).ADSCrossRefGoogle Scholar
  14. [14]
    T.J. Ahrens, W.H. Gust, and E.B. Royce, J. Appl. Phys. 39, p. 4610 (1968).ADSCrossRefGoogle Scholar
  15. [15]
    T. Mashimo, Y. Hanaoka, and K. Nagayama, J. Appl. Phys. 63, pp. 327–336 (1988).ADSCrossRefGoogle Scholar
  16. [16]
    T. Mashimo, in Shock Waves in Condensed Matter—1987 (ed. S.C. Schmidt and N.C. Holmes), North-Holland, Amsterdam, p. 285 (1988).Google Scholar
  17. [17]
    T. Mashimo, unpublished data.Google Scholar
  18. [18]
    T. Sato and S. Akimoto, J. Appl. Phys. 50, p. 5285 (1979).ADSCrossRefGoogle Scholar
  19. [19]
    T. Mashimo, unpublished data.Google Scholar
  20. [20]
    T. Mashimo, K. Nagayama, and A. Sawaoka, J. Appl. Phys. 54, p. 5043 (1983).ADSCrossRefGoogle Scholar
  21. [21]
    T. Mashimo, K. Nagayama, and A. Sawaoka, in Proc. 8th AIRAPT High Pressure Conf., p. 239 (1982).Google Scholar
  22. [22]
    Y. Syono, K. Kusaba, M. Kikuchi, and K. Fukuoka, in High-Pressure Research in Mineral Physics (ed. H. Manghanani and Y. Syono), p. 385 (1987).Google Scholar
  23. [23]
    K. Kusaba, M. Kikuchi, K. Fukuoka, and Y. Syono, Phys. Chem. Miner. 154, p. 238 (1988).ADSCrossRefGoogle Scholar
  24. [24]
    D.E. Grady, R.E. Hollenbach, and K.W. Schuler, J. Geophys. Res. 83, p. 2839 (1978).ADSCrossRefGoogle Scholar
  25. [25]
    R.G. McQueen, J.C. Jamieson, and S.P. Marsh, Science 155, p. 140 (1960).Google Scholar
  26. [26]
    L.V. Al’tshuler, M.A. Podurets, G.V. Simakov, and R.F. Trunin, Sov. Phys. Solid State 15, p. 969 (1973).Google Scholar
  27. [27]
    R.C. Garvie, R.N. Hannink, and R.T. Pasoe, Nature 256, p. 713 (1975).CrossRefGoogle Scholar
  28. [28]
    O. Ohtaka, S. Kume, and E. Ito, J. Am. Ceram. Soc. 71, p. C–448 (1988).Google Scholar
  29. [29]
    H. Arashi, T. Yagi, S. Akimoto, and Y. Kudoh, Phys. Rev. B41, p. 4309 (1990).ADSGoogle Scholar
  30. [30]
    J.M. Leger, R.F. Tomaszewski, A. Atouf, and A.S. Pereira, Phys. Rev. B47, p. 14075 (1993).ADSGoogle Scholar
  31. [31]
    T. Mashimo, K. Nagayama, and A. Sawaoka, Phys. Chem. Miner. 9, p. 237 (1983).ADSCrossRefGoogle Scholar
  32. [32]
    T. Mashimo, A. Nakamura, K. Kodama, K. Kusaba, K. Fukuoka, and Y. Syono, J. Appl. Phys. 77, p. 5060 (1995).ADSCrossRefGoogle Scholar
  33. [33]
    T. Mashimo, A. Nakamura, M. Nishida, S. Matsuzaki, K. Kusaba, K. Fukuoka, and Y. Syono, J. Appl. Phys. 77, p. 5069. (1995).ADSCrossRefGoogle Scholar
  34. [34]
    J.M. Leger, A. Atouf, P.E. Tomaszewski, and A.S. Pereira, Phys. Rev. B48, p. 93 (1993).ADSGoogle Scholar
  35. [35]
    D.E. Grady and T. Mashimo, J. Appl. Phys. 71, p. 4868 (1992).ADSCrossRefGoogle Scholar
  36. [36]
    T. Mashimo, J. Appl. Phys. 63, p. 4747 (1988).ADSCrossRefGoogle Scholar
  37. [37]
    T. Ogata, M. Kihara, K. Nakamura, and K. Kobayashi, J. Ceram. Soc. Jpn. 96, p. 310–316 (1988).CrossRefGoogle Scholar
  38. [38]
    H. Vollstadt, E. Ito, M. Akaishi, S. Akimoto, and O. Fukunaga, Proc. Jpn. Acad. 66, Ser B, p. 7 (1990).CrossRefGoogle Scholar
  39. [39]
    I. Gorczyca, N.E. Christensen, P. Perlin, I. Grzegory, J. Jun, and M. Boekowski, Solid State Commun. 79, p. 1033 (1991).ADSCrossRefGoogle Scholar
  40. [40]
    M. Ueno, A. Onodera, O. Shimomura, and K. Takemura, Phys. Rev. B45, p. 10123 (1992).ADSGoogle Scholar
  41. [41]
    A. Nakamura and T. Mashimo, in High-Pressure Science and Technology—1993 (ed. S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross), American Institute of Physics, New York, p. 303 (1995).Google Scholar
  42. [42]
    Z. Rosenberg, N.S. Brar, and S.J. Bless, J. Appl. Phys. 70, p. 167 (1991).ADSCrossRefGoogle Scholar
  43. [43]
    D.E. Grady, Private communication.Google Scholar
  44. [44]
    M.E. Kipp and D.E. Grady, in Proc. EURO DYMAT 94, in press (1995).Google Scholar
  45. [45]
    T. Mashimo, unpublished data.Google Scholar
  46. [46]
    A. Yamakawa, T. Nishioka, M. Miyake, K. Wakamori, A. Nakamura, and T. Mashimo, J. Ceram. Soc. Jpn. Int. Edition 101, p. 1322 (1993).Google Scholar
  47. [47]
    T. Mashimo, A. Nakamura, A. Yamakawa, T. Nishioka, and M. Miyake, in Dynamic Plasticity and Structural Behavior, p. 547 (1995).Google Scholar
  48. [48]
    N.S. Brar, Z. Rosenberg, and S.J. Bless, J. Appl. Phys. 69, p. 7890 (1991).ADSCrossRefGoogle Scholar
  49. [49]
    M.E. Kipp and D.E. Grady, in Shock Compression of Condensed Matter—1989 (ed. S.C. Schmidt, J.N. Johnson, and L.W. Davison), North-Holland, Amsterdam, p. 377 (1990).Google Scholar
  50. [50]
    T. Mashimo, M. Uehino, and A. Nakamura, in Proc. 20th Internat. Conf. High-Pressure Photograph & Photonics, SPIE Vol. 2513, SPIE Press, Bellingham, WA, p. 792 (1995).Google Scholar
  51. [51]
    T. Mashimo and M. Uchino, J. Appl. Phys. 81, p. 7064 (1997).ADSCrossRefGoogle Scholar
  52. [52]
    F.W. Neilson, Bull. Am. Phys. Soc. 2, p. 302 (1957).Google Scholar
  53. [53]
    C.E. Reynolds and G.E. Seay, J. Appl. Phys. 32, p. 1401 (1961).ADSCrossRefGoogle Scholar
  54. [54]
    W.J. Halpin, J Appl. Phys. 37, p. 153 (1966).ADSCrossRefGoogle Scholar
  55. [55]
    P.C. Lysne, J. Appl. Phys. 48, p. 1024 (1977).ADSCrossRefGoogle Scholar
  56. [56]
    T. Mashimo, K. Toda, K. Nagayama, T. Goto, and Y. Syono, J. Appl. Phys. 59, p. 748 (1986).ADSCrossRefGoogle Scholar
  57. [57]
    S. Minomura, M. Tanaka, B. Okai, and H. Nagasaki, Jpn. J. Appl. Phys. 28, Suppl., p. 404 (1970).Google Scholar
  58. [58]
    L.E. Pope and J.N. Johnson, J. Appl. Phys. 46, p. 720 (1975).ADSCrossRefGoogle Scholar
  59. [59]
    L. Davison, A.L. Stevens, and M.E. Kipp, J. Mech. Phys. Solids 25, p. 11 (1974).CrossRefGoogle Scholar
  60. [60]
    S. Mnshall, J. Appl. Phys. 26, p. 463 (1955).ADSCrossRefGoogle Scholar
  61. [61]
    L.M. Barker and R.E. Hollenbaeh, J. Appl. Phys. 45, p. 4872 (1974).ADSCrossRefGoogle Scholar
  62. [62]
    O.E. Jones and R.A. Graham, in Accurate Characterization of the High-Pressure Environment (ed. E.C. Lloyd), U. S. National Bureau of Standards, Washington, DC, p. 229 (1971).Google Scholar
  63. [63]
    P.P. Gillis, K.G. Hoge, and R.J. Wasley, J. Appl. Phys. 41, p. 2145 (1970).Google Scholar
  64. [64]
    J.R. Asay, L.C. Chhabildas, and D.P. Dandekar, J. Appl. Phys. 51, p. 4774 (1980).ADSCrossRefGoogle Scholar
  65. [65]
    Y.M. Gupta, G.E. Duvall, and G.R. Fowles, J. Appl. Phys. 46, p. 532 (1975).ADSCrossRefGoogle Scholar
  66. [66]
    J.R. Asay, D.L. Hicks, and D.B. Holdridge, J. Appl. Phys. 46, p. 4316 (1975).ADSCrossRefGoogle Scholar
  67. [68]
    W.J. Murri and G.D. Anderson, J. Appl. Phys. 41, p. 3521 (1970).ADSCrossRefGoogle Scholar
  68. [69]
    W.H. Gust and E.B. Royce, J. Appl. Phys. 42, p. 1897 (1971).ADSCrossRefGoogle Scholar
  69. [70]
    T. Goto, T. Sato, and Y. Syono, Jpn. J. Appl. Phys. 21, p. L369 (1982).ADSCrossRefGoogle Scholar
  70. [71]
    R.A. Graham, O.E. Jones, and J.R. Holland, J. Phys. Chem. Solids 27, p. 1519 (1960).CrossRefGoogle Scholar
  71. [72]
    W.H. Gust and E.B. Royce, J. Appl. Phys. 43, p. 4439 (1972).ADSCrossRefGoogle Scholar
  72. [73]
    T. Goto and Y. Syono, in Shock Waves in Condensed Matter—1981 (ed. W.J. Nellis, L. Seaman, and R.A. Graham), American Institute of Physics, New York, p. 320 (1982).Google Scholar
  73. [74]
    T.J. Ahrens, J. Appl. Phys. 37, p. 2532 (1966).ADSCrossRefGoogle Scholar
  74. [75]
    T. Goto, J. Sato, and Y. Syono, in High Pressure Research: Application in Geophysics (ed. M.H. Manghnani and S. Akimoto), p. 595 (1982).Google Scholar
  75. [76]
    J. Wackerle, J. Appl. Phys. 33, p. 922 (1962).ADSCrossRefGoogle Scholar
  76. [77]
    Y. Syono and T. Goto, in High Pressure Research: Application in Geophysics (ed. M.H. Manghnani and S. Akimoto), p. 563 (1982).Google Scholar
  77. [78]
    T. Goto and Y. Syono, J. Appl. Phys. 58, p. 2548 (1985).ADSCrossRefGoogle Scholar
  78. [79]
    W.H. Gust, A.C. Holt, and E.B. Royce, J. Appl. Phys. 44, p. 550 (1973).ADSCrossRefGoogle Scholar
  79. [80]
    D.E. Grady, J. Geophys. Res. 85, p. 913 (1980).ADSCrossRefGoogle Scholar
  80. [81]
    T. Mashimo, in High-Pressure Science and Technology—1993 (ed. J.R. Asay, R.A. Graham, and G.K. Straub), American Institute of Physics, New York, p. 757 (1995).Google Scholar
  81. [82]
    J.W. Taylor and M.H. Rice, J. Appl. Phys. 34, p. 364 (1963).ADSCrossRefGoogle Scholar
  82. [83]
    J.E. Flinn, G.E. Duvall, G.R. Fowles, and R.F. Tinder, J. Appl. Phys. 46, p. 3752 (1975).ADSCrossRefGoogle Scholar
  83. [84]
    P. Kumar and R.J. Clifton, J. Appl. Phys. 50, p. 4747 (1979).ADSCrossRefGoogle Scholar
  84. [85]
    D. Stöffler, Fortschr. Miner. 49, p. 50 (1972).Google Scholar
  85. [86]
    A.V. Ananin, O.N. Breusov, A.N. Dremin, S.V. Pershin, and V.F. Tatsii, Combust. Expl. Shock Waves 10, p. 426 (1974).Google Scholar
  86. [87]
    W.F. Müller and U. Hornemann, Earth Planet Sci. Lett. 7, p. 251 (1969).ADSCrossRefGoogle Scholar
  87. [88]
    W.U. Reimold and D. Stöffler, in Proc. 9th. Lunar Planet Sci. Conf. p. 2805 (1978).Google Scholar
  88. [89]
    M.J. Klein, Phil. Mag. 12, p. 735 (1965).ADSCrossRefGoogle Scholar
  89. [90]
    J.F. Bauer, in Proc. 10th Lunar Planet Sci. Conf., p. 2573 (1979).Google Scholar
  90. [91]
    H. Mori, J. Jpn. Crystallogr. Soc. 27, p. 179 (1985).Google Scholar
  91. [92]
    P.J. Brannon, C.H. Konrad, R.W. Morris, E.D. Jones, and J.R. Asay, technical report SAND82-2469, Sandia National Laboratories, Albuquerque, New Mexico (1983).Google Scholar
  92. [93]
    A.J. Granz, Phys. Chem. Miner. 16, p. 221 (1988).ADSGoogle Scholar
  93. [94]
    W. Engelhardt and D. Stöffler, in Shock Metamorphism of Natural Minerals (ed. B. French and N. Short), Mono Press, Baltimore, p. 159 (1968).Google Scholar
  94. [95]
    R. Jeanloz, T.J. Ahrens, J.S. Lally, G.L. Nord. Jr., J. M. Christie, and A.H. Heuer, Science 197, p. 457 (1972).ADSCrossRefGoogle Scholar
  95. [96]
    A.G. Bogdanov, S.A. Popov, and V.S. Rundenko, Acad. Sci. USSR Proc. Chem. Sect. 201, p. 1011 (1971).Google Scholar
  96. [97]
    P.S. DeCarli and D.J. Milton, Science 147, p. 144 (1965).ADSCrossRefGoogle Scholar
  97. [98]
    T. Mashimo, M. Kodama, and K. Nagayama, Adv. Ceram. 24, p. 329 (1988).Google Scholar
  98. [99]
    L. Davison and R.A. Graham, Phys. Rept. 55, p. 255 (1979).ADSCrossRefGoogle Scholar
  99. [100]
    T. Mashimo, in Shock Waves in Condensed Matter—1987 (ed. S.C. Schmidt and N.C. Holmes), North-Holland, Amsterdam, p. 285 (1988).Google Scholar
  100. [101]
    H. Sugiura, K. Kondo, and A. Sawaoka, J. Appl. Phys. 52, p. 3375 (1981).ADSCrossRefGoogle Scholar
  101. [102]
    S.J. Bless, N.S. Brar, and A. Rozenberg, in Shock Waves in Condensed Matter—1987 (ed. S.C. Schmidt and N.C. Holmes), North-Holland, Amsterdam, p. 309 (1988).Google Scholar
  102. [103]
    P.F. Chartagnac, J. Appl. Phys. 53, p. 948 (1982).ADSCrossRefGoogle Scholar
  103. [104]
    G.I. Kanel, S.V. Razorenov, and V.E. Fortov, in Shock Compression of Condensed Matter—1991 (ed. S.C. Schmidt, R.D. Dick, J.W. Forbes, and D.J. Tasker), North-Holland, Amsterdam, p. 451 (1992).Google Scholar
  104. [105]
    N.S. Brar, S.J. Bless, and Z. Rosenberg, Appl. Phys. Lett. 59, p. 3396 (1991).ADSCrossRefGoogle Scholar
  105. [106]
    Sumitomo Electric Industries Co. Ltd., Private communication.Google Scholar
  106. [107]
    A. Horiguchi, F. Ueno, and A. Tsuge, Toshiba Rev. 44, p. 616 (1986).Google Scholar
  107. [108]
    G.E. Duvall and R.A. Graham, Rev. Mod. Phys. 49, p. 523 (1977).ADSCrossRefGoogle Scholar
  108. [109]
    Y. Syono, in High Pressure Explosive Processing of Ceramics (ed. R.A. Graham and A.B. Sawaoka), Tera Tech, Switzerland, pp. 479–400 (1987).Google Scholar
  109. [110]
    W.H. Gust and D.A. Young, in High Pressure Science & Technology (ed. K.D. Timmerhaus and M.S. Barber), Plenum, p. 944 (1979).Google Scholar
  110. [111]
    T. Goto and Y. Syono, J. Appl. Phys. 58, p. 2548 (1985).ADSCrossRefGoogle Scholar
  111. [112]
    L.V. Al’tshuler and A.A. Bakanova, Sov. Phys. Usp. 11, p. 678 (1969).ADSCrossRefGoogle Scholar
  112. [113]
    G.W. Anderson and F.W. Neilson, Bull Am. Phys. Soc. 2, p. 302 (1957).Google Scholar
  113. [114]
    D.E. Grady, G.E. Duvall, and E.B. Royce, J. Appl. Phys. 43, p. 1948 (1972).ADSCrossRefGoogle Scholar
  114. [115]
    D.A. King and T.J. Ahrens, J. Geophys. Res. 81, p. 931 (1976).ADSCrossRefGoogle Scholar
  115. [116]
    T. Sekine, Private communication.Google Scholar
  116. [117]
    O. Mishima, L.D. Calvert, and E. Whalley, Nature 310, p. 393 (1984).ADSCrossRefGoogle Scholar
  117. [118]
    M. Maden, P. Gilletm, C. Jullien, and G.D. Price, Phys. Chem. Miner. 18, p. 7 (1991).ADSGoogle Scholar
  118. [119]
    M.B. Kruger and R. Jeanloz, Science 249, p. 647 (1990).ADSCrossRefGoogle Scholar
  119. [120]
    P.S. DeCarli and J.C. Jamieson, J. Chem. Phys. 31, p. 1675 (1959).ADSCrossRefGoogle Scholar
  120. [121]
    T. Mashimo, K. Nishii, T. Soma, and A. Sawaoka, Phys. Chem. Miner. 5, p. 367 (1980).ADSCrossRefGoogle Scholar
  121. [122]
    D. Stöffler and U. Hornemann, Meteorite 7, p. 371 (1972).ADSGoogle Scholar
  122. [123]
    R.V. Gibbons and T.J. Ahrens, Phys. Chem. Miner. 1, p. 95 (1977).ADSCrossRefGoogle Scholar
  123. [124]
    M. Kimura, T. Goto, and Y. Syono, Contr. Miner. Petrol. 61, p. 299 (1977).ADSCrossRefGoogle Scholar
  124. [125]
    M. Okuno, F. Marumo, and Y. Syono, Miner. J. 12, p. 197 (1985).CrossRefGoogle Scholar
  125. [126]
    N. Suresh, G. Satish, G.C. Gupta, S.K.S. Sangeeta, and S.C. Sabharwal, J. Appl. Phys. 76, p. 1530 (1994).ADSCrossRefGoogle Scholar
  126. [127]
    D.J. Erskine and W.J. Nellis, Nature 349, p. 317 (1991).ADSCrossRefGoogle Scholar
  127. [128]
    S. Kawasaki, T. Yamanaka, S. Kume, and T. Ashida, Solid State Commun. 76, p. 527 (1990).ADSCrossRefGoogle Scholar
  128. [129]
    L.C. Chhabildas and J.R. Asay, J. Appl. Phys. 50, p. 2749 (1979).ADSCrossRefGoogle Scholar
  129. [130]
    J.W. Swegle and D.E. Grady, J. Appl. Phys. 58, p. 692 (1985).ADSCrossRefGoogle Scholar
  130. [131]
    A.S. Abou-Sayed, R. J. Clifton, and L. Hermann, Exp. Mech. 6, p. 127 (1976).CrossRefGoogle Scholar
  131. [132]
    Y.M. Gupta, Appl. Phys. Lett. 29, p. 694 (1976).ADSCrossRefGoogle Scholar
  132. [133]
    L.C. Chhabildas and J.W. Swegle, J. Appl. Phys. 51, p. 4799 (1980).ADSCrossRefGoogle Scholar
  133. [134]
    L.M. Barker and D.D. Scott, technical report SAND84-0432, Sandia National Laboratories, Albuquerque, New Mexico (1984).Google Scholar
  134. [135]
    J. Stainberg, J. Appl. Phys. 65, p. 3417 (1988).ADSCrossRefGoogle Scholar
  135. [136]
    F.L. Addessio and J.N. Johnson, J. Appl. Phys. 67, p. 3275 (1990).ADSCrossRefGoogle Scholar
  136. [137]
    D.H. Robertson, D.W. Brenner, and C.T. White, Phys. Rev. Lett. 25, p. 3132 (1991).ADSCrossRefGoogle Scholar
  137. [138]
    N. J. Wagner, B.L. Holian, and A.F. Voter, Phys. Rev. A45, p. 8457 (1992).ADSGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1998

Authors and Affiliations

  • Tsutomu Mashimo

There are no affiliations available

Personalised recommendations