Advertisement

Molecular Processes in a Shocked Explosive: Time-Resolved Spectroscopy of Liquid Nitromethane

  • G. I. Pangilinan
  • Y. M. Gupta
Part of the High-Pressure Shock Compression of Condensed Matter book series (SHOCKWAVE)

Abstract

Scientific studies of shock-induced chemical decomposition in condensed high explosives and the subsequent buildup and propagation of detonation waves comprise a significant element of shock wave research. High explosives play a dual role in this challenging field: They are commonly used to produce intense shock waves to permit an examination of condensed matter at extreme conditions; they can also be used to gain a fundamental understanding of the atomic/ molecular processes governing shock-induced chemical changes. In this chapter, we focus our attention on the latter aspect.

Keywords

Shock Wave Peak Pressure Shock Loading High Explosive Streak Camera 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W. Fickett and W.C. Davis, Detonation, University of California Press, Los Angeles (1979).Google Scholar
  2. [2]
    R. Chéret, Detonation of Condensed Explosives, Springer-Verlag, New York (1993).Google Scholar
  3. [3]
    M.C. Cowperthwaite and J.T. Rosenberg, in Proceedings of the Sixth Symposium on Detonation, Office of Naval Research, Arlington, VA, p. 786 (1976).Google Scholar
  4. [4]
    Proceedings of Sixth through Tenth Symposia (International) on Detonation, Office of the Chief of Naval Research, Arlington, VA (1976 through 1993).Google Scholar
  5. [5]
    E.L. Lee and C.M. Tarver, Phys. Fluids 23, p. 2362 (1980).ADSCrossRefGoogle Scholar
  6. [6]
    G.E. Duvall, K.M. Ogilvie, R. Wilson, P.M. Bellamy, and P.S.P. Wei, Nature 296, p. 846 (1982).ADSCrossRefGoogle Scholar
  7. [7]
    C.S. Yoo and Y.M. Gupta, J. Phys. Chem. 94, p. 2857 (1990).CrossRefGoogle Scholar
  8. [8]
    C.S. Yoo, G.E. Duvall, J. Furrer, and R. Granholm, J. Phys. Chem. 93, p. 3012 (1989).CrossRefGoogle Scholar
  9. [9]
    C.S. Yoo and Y.M. Gupta, J. Chem. Phys. 93, p. 2082 (1990).ADSCrossRefGoogle Scholar
  10. [10]
    P.D. Horn and Y.M. Gupta, Phys. Rev. B 39, p. 973 (1989).ADSCrossRefGoogle Scholar
  11. [11]
    R. Gustavsen and Y.M. Gupta, J. Appl. Phys. 69, p. 918 (1991).ADSCrossRefGoogle Scholar
  12. [12]
    R. Gustavsen and Y.M. Gupta, J. Chem. Phys. 95, p. 451 (1991).ADSCrossRefGoogle Scholar
  13. [13]
    S.C. Schmidt, D.S. Moore, D. Schiferl, and J.W. Shaner, Phys. Rev. Letters 50, p. 661 (1983).ADSCrossRefGoogle Scholar
  14. [14]
    D.S. Moore, S.C. Schmidt, and J.W. Shaner, Phys. Rev. Lett. 50, p. 1819 (1983).ADSCrossRefGoogle Scholar
  15. [15]
    N.C. Holmes, W.J. Nellis, W.B. Graham, and G.E. Walrafen, Phys. Rev. Lett. 55, p. 2433 (1985).ADSCrossRefGoogle Scholar
  16. [16]
    Y.M. Gupta, P.D. Horn, and C.S. Yoo, Appl. Phys. Lett. 55, p. 33 (1989).ADSCrossRefGoogle Scholar
  17. [17]
    C.S. Yoo, Y.M. Gupta, and P.D. Horn, Chem. Phys. Lett. 159, p. 178 (1989).ADSCrossRefGoogle Scholar
  18. [18]
    J.M. Boteler and Y.M. Gupta, Phys. Rev. Lett. 71, p. 3497 (1993).ADSCrossRefGoogle Scholar
  19. [19]
    R. Gustavsen and Y.M. Gupta, J. Appl. Phys. 75, p. 2837 (1994).ADSCrossRefGoogle Scholar
  20. [20]
    S.M. Gallivan and Y.M. Gupta, J. Appl. Phys. 78, p. 1557 (1995).ADSCrossRefGoogle Scholar
  21. [21]
    A.M. Renlund, S.A. Sheffield, and W.M. Trott, in Shock Compression of Condensed Matter—1985 (ed. Y.M. Gupta), Plenum Press, New York, p. 237 (1986).Google Scholar
  22. [22]
    H. Suzuki, Electronic Absorption Spectra and Geometry of Organic Molecules: An Application of Molecular Orbital Theory, Academic Press, New York (1967).Google Scholar
  23. [23]
    G.M. Barrow, Introduction to Molecular Spectroscopy, McGraw-Hill, Singapore (1962).Google Scholar
  24. [24]
    Y.M. Gupta, High Press. Res. 10, p. 713 (1992).ADSCrossRefGoogle Scholar
  25. [25]
    Y.M. Gupta, in Shock Compression of Condensed Matter—1991 (ed. S.C. Schmidt, R.D. Dick, J.W. Forbes, and D.G. Tasker), Elsevier, Amsterdam, p. 15 (1992).Google Scholar
  26. [26]
    G.E. Duvall, Optical Spectroscopy of Dynamically Compressed Liquids, Final Technical Report under Contract No. N00014-77C-0232, Office of Naval Research, Arlington, VA (June 30, 1986).Google Scholar
  27. [27]
    M.M. Sushchinskii, Raman Spectra of Molecules and Crystals, Israel Program for Scientific Transactions, Ltd., Jerusalem (1972).Google Scholar
  28. [28]
    S. Nagakura, Mol. Phys. 3, p. 152 (1960).ADSCrossRefGoogle Scholar
  29. [29]
    G. Malewski, M. Pfeiffer, and P. Reich, J. Mol. Struct. 3, p. 419 (1969).ADSCrossRefGoogle Scholar
  30. [30]
    J.R. Hill, D. S. Moore, S.C. Schmidt, and C.B. Storm, J. Phys. Chem. 95, p. 3039 (1991).CrossRefGoogle Scholar
  31. [31]
    F.D. Verderame, J.A. Lannon, L.E. Harris, W.G. Thomas, and E.A. Lucia, J. Chem. Phys. 56, p. 2638 (1972).ADSCrossRefGoogle Scholar
  32. [32]
    P.J. Miller, S. Block, and G.J. Piermarini, J. Phys. Chem. 93, p. 462 (1989).CrossRefGoogle Scholar
  33. [33]
    D.T. Cromer, R.R. Ryan, and D. Schiferl, J. Phys. Chem. 89, p. 2315 (1985).CrossRefGoogle Scholar
  34. [34]
    G.J. Piermarini, S. Block, and P.J. Miller, Phys. Chem. 93, p. 457 (1989).CrossRefGoogle Scholar
  35. [35]
    J.W. Brasch, J. Phys. Chem. 84, p. 2084 (1980).CrossRefGoogle Scholar
  36. [36]
    R. Engelke and J.B. Bdzil, Phys. Fluids 26, p. 1210 (1983).ADSCrossRefGoogle Scholar
  37. [37]
    S.A. Sheffield, R. Engelke, and R. Alcon, in Proceedings of the Ninth Symposium (International) on Detonation, Office of the Chief of Naval Research, Arlington, VA, p. 39 (1989).Google Scholar
  38. [38]
    D.R. Hardesty, Combust. Flame 27, p. 229 (1976).CrossRefGoogle Scholar
  39. [39]
    M.D. Cook and P.J. Haskins, in Proceedings of the 19th International Annual Conference of ICT on Combustion and Detonation Phenomena, Fraunhofer-Institute fur Chemische, Technologie, Explosivstoffe, Karlsruhe, Germany, p. 85 (1988).Google Scholar
  40. [40]
    A. Delpeuch and A. Menil, in Shock Waves in Condensed Matter (eds. J.R. Asay, R.A. Graham, and G.K. Straub), Elsevier Science Publishing, New York, p. 309 (1984).Google Scholar
  41. [41]
    S.C. Schmidt, D.S. Moore, J.W. Shaner, D.L. Shampine, and W.T. Holt, Physica 139 & 140B, p. 587 (1986).Google Scholar
  42. [42]
    A.M. Renlund and W.M. Trott, Shock Compression of Condensed Matter—1989 (eds. S.C. Schmidt, J.N. Johnson, and L.W. Davison), Elsevier Science Publishing, New York, p. 875 (1990).Google Scholar
  43. [43]
    R. Engelke, W.L. Earl, and C.M. Rohlfing, Int. J. Chem. Kinet. 18, p. 1205 (1986).CrossRefGoogle Scholar
  44. [44]
    R. Engelke, W.L. Earl, and C.M. Rohlfing, J. Chem. Phys. 84, p. 142 (1986).ADSCrossRefGoogle Scholar
  45. [45]
    R. Engelke, D. Schiferl, C.B. Storm, and W.L. Earl, J. Phys. Chem. 92, p. 6815 (1988).CrossRefGoogle Scholar
  46. [46]
    R.D. Bardo, Int. J. Quantum Chem.: Quantum Chem. Symp., 20 p. 455 (1986).CrossRefGoogle Scholar
  47. [47]
    M.D. Cook and P.J. Haskins, in Proceedings of the 9th Symposium (International) Detonation, Office of the Chief of Naval Research, Arlington, VA, p. 1027 (1989).Google Scholar
  48. [48]
    M.D. Cook and P.J. Haskins, in Proceedings of the 10th Symposium (International) Detonation, Office of the Chief of Naval Research, Arlington, VA, p. 870 (1993).Google Scholar
  49. [49]
    C.P. Constantinou, The Nitromethane-Amine Interaction, Ph.D. dissertation, University of Cambridge (1992).Google Scholar
  50. [50]
    S. Odiot, M. Blain, E. Vauthier, and S. Fliszar, J. Mol. Struct. (Theochem.) 279, p. 233 (1993).CrossRefGoogle Scholar
  51. [51]
    C.P. Constantinou, J.M. Winey, and Y.M. Gupta, J. Phys. Chem. 98, p. 7767 (1994).CrossRefGoogle Scholar
  52. [52]
    Y.M. Gupta, G.I. Pangilinan, J.M. Winey, and C.P. Constantinou, Chem. Phys. Lett. 232, p. 341 (1995).ADSCrossRefGoogle Scholar
  53. [53]
    G.I. Pangilinan and Y.M. Gupta, J. Phys. Chem. 98, p. 4522 (1994).CrossRefGoogle Scholar
  54. [54]
    G.E. Duvall, Equation of State of Liquid Nitromethane, tehnical report, Washington State University—Shock Dynamics Center, unpublished.Google Scholar
  55. [55]
    J.M. Winey, Ph.D. thesis, Washington State University (1995).Google Scholar
  56. [56]
    R.W. Woolfolk, M. Cowperthwaite, and R. Shaw, Thermochim. Acta 5, p. 409 (1973).CrossRefGoogle Scholar
  57. [57]
    P.J. Lysne and D.R. Hardesty, J. Chem. Phys. 59, p. 6512 (1973).ADSCrossRefGoogle Scholar
  58. [58]
    S.K. Sharma, H.K. Mao, and P.M. Bell, Phys. Rev. Lett. 44, p. 886 (1980).ADSCrossRefGoogle Scholar
  59. [59]
    B.A. Weinstein and R. Zallen, in Topics in Applied Physics Vol. 54 (eds. M. Cardona and G. Guntherodt), Springer-Verlag, New York, p. 463 (1984).Google Scholar
  60. [60]
    J.J. Dick, J. Phys. Chem. 97, p. 6193 (1993).CrossRefGoogle Scholar
  61. [61]
    J.J. Dick, R.N. Mulford, W.J. Spencer, D.R. Petit, E. Garcia, and D.C. Shaw, J. Appl. Phys. 70, p. 3572 (1991).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1998

Authors and Affiliations

  • G. I. Pangilinan
  • Y. M. Gupta

There are no affiliations available

Personalised recommendations