Mechanisms of Elastoplastic Response of Metals to Impact

  • C. S. Coffey
Part of the High-Pressure Shock Compression of Condensed Matter book series (SHOCKWAVE)


The elastoplastic response of metals to impact and shock has been the subject of a great many investigations. Many, if not most, of these were developed for mild impact conditions where thermal effects are important. The author’s own peculiar situation has led him to examine the elastoplastic response of metals from the perspective of high-amplitude impacts and shocks. In this regime, thermal effects, although important, are secondary to the effects of the impact or shock. Thermal effects are necessary to properly account for plastic flow behavior for low-amplitude impacts and shocks and to provide a more correct picture of plastic flow at higher stress levels. Much of what follows arose from efforts to account for the energy dissipation and localization that occurs in crystalline solids during shock or impact. These processes are related to plastic deformation since all occur due to the creation and motion of dislocations.


Edge Dislocation Dislocation Core Plastic Strain Rate Dislocation Source Applied Shear Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G.I. Taylor, Proc. Roy. Soc. A 145, p. 362 (1934).ADSzbMATHCrossRefGoogle Scholar
  2. [2]
    M. Polanyi, Z. Phys. 89, p.660 (1934).ADSCrossRefGoogle Scholar
  3. [3]
    J.M. Burgers, Proc. Kon. Ned. Akad. Wetenschap. 42, pp. 293, 378 (1939).Google Scholar
  4. [4]
    E. Orowan, Z. Phys. 89, pp.605, 634 (1934).ADSCrossRefGoogle Scholar
  5. [5]
    J. Frenkel, Z. Phys. 37, p. 572 (1926).ADSCrossRefGoogle Scholar
  6. [6]
    J. Hirth and J. Lothe, Theory of Dislocations, McGraw-Hill Book Co., New York, pp. 701–706 (1968).Google Scholar
  7. [7]
    J. Sharma, in Shock Compression of Condensed Matter—1995 (eds. S.C. Schmidt and W.C. Tao). American Institute of Physics, New York (1996).Google Scholar
  8. [8]
    W.G. Johnston and J.J. Gilman, J. Appl. Phys. 33, p. 129 (1959).ADSCrossRefGoogle Scholar
  9. [9]
    K.S. Kim and R.J. Clifton, J. Mater. Sci. 19, p. 1428, (1984).ADSCrossRefGoogle Scholar
  10. [10]
    U.F. Kocks, A.S. Argon, and M.F. Ashby, in Prog. Mater. Sci. 19 (1975).Google Scholar
  11. [11]
    C.S. Coffey, Phys. Rev. B49, p. 208 (1994).ADSGoogle Scholar
  12. [12]
    J. Weertman, J. Appl. Phys. 29, p. 1685 (1958).ADSCrossRefGoogle Scholar
  13. [13]
    A. Messiah, Quantum Mechanics, Vol. 1. Wiley, New York, p.77 (1961).Google Scholar
  14. [14]
    V.L. Indenbom, B.V. Petukhov, and J. Lothe, in Elastic Strain Fields and Dislocation Mobility (eds. V. L. Indenbom and J. Lothe), North-Holland, Amsterdam, p. 489 (1992).Google Scholar
  15. [15]
    J.J. Gilman, Aust. J. Phys. 13, p. 327 (1960).ADSCrossRefGoogle Scholar
  16. [16]
    C.S. Coffey, J. Appl. Phys. 66, p. 1654 (1989).ADSCrossRefGoogle Scholar
  17. [17]
    J.D. Campbell and W.G. Ferguson, Phil. Mag. 21, p. 63 (1970).ADSCrossRefGoogle Scholar
  18. [18]
    A.R. Rosenfield and G.T. Hahn, Trans. Am. Soc. Metals 59, p. 962 (1966).Google Scholar
  19. [19]
    P.S. Follansbee and U.F. Kocks, Acta Met. 36, p. 81 (1988).CrossRefGoogle Scholar
  20. [20]
    O. Vohringer, “Deformation Behavior of Metallic Materials,” International Summer School on Dynamic Behavior of Materials, ENSM, Nantes (1989).Google Scholar
  21. [21]
    W.G. Ferguson, Ph.D. Thesis, University of Auckland, New Zealand (1964).Google Scholar
  22. [22]
    J.W. Swegle and D.E. Grady, J. Appl. Phys. 58, p. 692 (1985).ADSCrossRefGoogle Scholar
  23. [23]
    O.A. Troitskii and V.I. Likhtman, Dokl. Akad. Nauk. SSSR, 148, p. 332 (1963).Google Scholar
  24. [24]
    H. Conrad and A.F. Sprecher, Dislocations in Solids (ed. F.R.N. Nabarro), Elsevier Science, New York, (1989), Chapter 43.Google Scholar
  25. [25]
    H. Conrad, A.F. Sprecher, W.D. Cao, and X.P. Lu, J. Miner. Metals Mater. Soc. 42, p. 28 (1990).Google Scholar
  26. [26]
    A.N. Kulichenko and B.I. Smirnov, Sou. Phys. Solid State 23, p. 595 (1981).Google Scholar
  27. [27]
    A.N. Kulichenko and B.I. Smirnov, Sou. Phys. Solid State 26, p. 570 (1984).Google Scholar
  28. [28]
    C.T. Stanton, C.S. Coffey, and F. Zerilli, J. Mater. Res. 10, p. 258 (1995).ADSCrossRefGoogle Scholar
  29. [29]
    J.J. Gilman, J. Appl. Phys. 39, p. 6086 (1968).ADSCrossRefGoogle Scholar
  30. [30]
    J.W. Glen, Phil. Mag. 1, p. 400 (1956).ADSCrossRefGoogle Scholar
  31. [31]
    N.F. Mott, Phil. Mag. 1, p. 568 (1956).ADSzbMATHCrossRefGoogle Scholar
  32. [32]
    C.S. Coffey, Phys. Rev. B24, p. 6984 (1981).ADSGoogle Scholar
  33. [33]
    C. Kittel, Quantum Theory of Solids, J. Wiley & Sons, Inc., New York, (1963).Google Scholar
  34. [34]
    C.S. Coffey, Phys. Rev. B32, p. 5335 (1984).ADSGoogle Scholar
  35. [35]
    C.S. Coffey, in Structure and Properties of Energetic Materials (eds. D.H. Liebenberg, R.W. Armstrong, and J.J. Gilman), Material Research Society, Boston, Volume 296, p. 63 (1993).Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1998

Authors and Affiliations

  • C. S. Coffey

There are no affiliations available

Personalised recommendations