Advertisement

Molecular Dynamics Analysis of Shock Phenomena

  • D. H. Robertson
  • D. W. Brenner
  • C. T. White
Part of the High-Pressure Shock Compression of Condensed Matter book series (SHOCKWAVE)

Abstract

The effects of shock waves are evident in such common occurrences as the thunderclap following a lightening strike or the craters visible on the Moon [1]. Shock waves can result from or cause various physical and chemical processes. For example, shock waves can cause chemical reactions which subsequently couple with the shock wave to generate an explosive self-sustaining detonation (see, for example, Ref. 2). The ability of chemical reactions to couple with shock waves has direct implications on the strength and sensitivity of explosives and, therefore, their usefulness and safety in industrial and defense applications. Likewise, shock waves can also cause physical changes such as a transition to a high-pressure phase in a material [3]. This polymorphic phase transition can couple with the shock to produce a split shock wave profile [4]. These phase changes might place the material in a state that remains stable upon the release of pressure, such as the transition of graphite to diamond (lonsdaleite) [5]. Shock waves can therefore transform a material into a state that has more desirable properties or economic value and at the same time produce interesting phenomena such as shock wave splitting.

Keywords

Shock Wave Shock Front Diatomic Molecule Energetic Material Critical Diameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B.L. Holian, in Macroscopic Simulations of Complex Hydrodynamic Phenomena (eds. M. Maresehal and B.L. Holian), Plenum Press, New York, pp. 75–85 (1992).Google Scholar
  2. [2]
    W.C. Davis, Sci. Am. 256, pp. 106–112 (1987); Ya. B. Zel’dovich and A.S. Kompaneets, Theory of Detonation, Academic, New York (1960); W. Fickett and W.C. Davis, Detonation, University of California Press, Berkeley (1979); W. Fickett, Introduction to Detonation Theory, University of California Press, Berkeley (1985).CrossRefGoogle Scholar
  3. [3]
    G.E. Duvall and R.A. Graham, Rev. Mod. Phys. 49, pp. 523–579 (1977).ADSCrossRefGoogle Scholar
  4. [4]
    D. Bancroft, E.L. Peterson, and S. Mnshall, J. Appl. Phys. 27, pp. 291–298 (1956).ADSCrossRefGoogle Scholar
  5. [5]
    P.S. DeCarli and J.C. Jamieson, Science 133, pp. 1821–1822 (1961).ADSCrossRefGoogle Scholar
  6. [6]
    B.L. Holian, W.G. Hoover, W. Moran, and G.K. Straub, Phys. Rev. 22, p. 2798 (1980).ADSCrossRefGoogle Scholar
  7. [7]
    A.N. Dremin and V.Yu. Klimenko, Prog. Astronaut. Aeronaut. 75, p. 253 (1981).Google Scholar
  8. [8]
    D.W. Brenner, Phys. Rev. B. 42, p. 9458 (1990).ADSCrossRefGoogle Scholar
  9. [9]
    D.W. Brenner, D.H. Robertson, M.L. Elert, and C.T. White, Phys. Rev. Lett. 70, pp. 2174–2177 (1993).ADSCrossRefGoogle Scholar
  10. [10]
    C.T. White, D.H. Robertson, M.L. Elert, and D.W. Brenner, in Macroscopic Simulations of Complex Hydrodynamic Phenomena, (eds. M. Maresehal and B.L. Holian), Plenum Press, New York, pp. 111–123 (1992).Google Scholar
  11. [11]
    J.A. Harrison, C.T. White, R.J. Colton, and D.W. Brenner, Phys. Rev. B 39, p. 1453 (1989).ADSCrossRefGoogle Scholar
  12. [12]
    J.A. Harrison, C.T. White, R.J. Colton, and D.W. Brenner, MRS Bulliten, 18, p. 50–53 (1993).Google Scholar
  13. [13]
    J.A. Harrison and D.W. Brenner, J. Am. Chem. Soc. 116, pp. 10399–10402 (1994).CrossRefGoogle Scholar
  14. [14]
    D.H. Robertson, D.W. Brenner, and C.T. White, J. Phys. Chem. 96, pp. 6133–6135 (1992).CrossRefGoogle Scholar
  15. [15]
    D.H. Robertson, D.W. Brenner, and C.T. White, Phys. Rev. Lett. 67, pp. 3132–3135 (1991).ADSCrossRefGoogle Scholar
  16. [16]
    C.T. White, S.B. Sinnott, J.W. Mintmire, D.W. Brenner, and D.H. Robertson, Int. J. Quant. Chem. 28, pp. 129–137 (1994).CrossRefGoogle Scholar
  17. [17]
    G.C. Abell, Phys. Rev. B 31, p. 6184–6196 (1985).ADSCrossRefGoogle Scholar
  18. [18]
    J. Tersoff, Phys. Rev. B 37, p. 6991–7000 (1988).ADSCrossRefGoogle Scholar
  19. [19]
    J.N. Murrell, S. Carter, S.C. Farantos, P. Huxley, and A.J. Varandas, Molecular Potential Energy Functions, Wiley, Chichester (1984).Google Scholar
  20. [20]
    G.C. Fettis, J.H. Knox, and A.F. Trotman-Dickenson, J. Chem. Soc. London, p. 1064 (1960).Google Scholar
  21. [21]
    C.W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs, NJ, p. 148 (1971).zbMATHGoogle Scholar
  22. [22]
    Ya.B. Zel’dovich and Yu.P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamics Phenomena, Academic Press, New York (Vols. 1 &2)(1966).Google Scholar
  23. [23]
    P.J. Haskins and M.D. Cook,. High-Pressure Science and Technology—1993 (eds. S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross), American Institute of Physics, New York, pp. 1341–1344 (1994).Google Scholar
  24. [24]
    D.H. Robertson, High-Pressure Science and Technology —1993 (eds. S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross), American Institute of Physics, New York, pp. 1345–1348 (1994).Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1998

Authors and Affiliations

  • D. H. Robertson
  • D. W. Brenner
  • C. T. White

There are no affiliations available

Personalised recommendations