Advertisement

Equation of State at High Pressure

  • S. K. Sikka
  • B. K. Godwal
  • R. Chidambaram
Chapter
Part of the High-Pressure Shock Compression of Condensed Matter book series (SHOCKWAVE)

Abstract

The equation of state (EOS) of a system is a relationship between thermodynamic variables like pressure, p, and energy, E, with volume, V, and temperature, T. It has applications in a number of fields: condensed-matter physics, geophysics, astrophysics, plasma physics, and nuclear physics. Also, it is a vital input in hydrodynamic calculations for a wide spectrum of practical needs, e.g., in reactor safety simulations, design of fission and fusion energy producing devices, analysis of hypervelocity impacts, and weapon development.

Keywords

Shock Wave Local Density Approximation Shock Compression Pressure Ionization Shock Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A.L. Ruoff and H. Luo, in Recent Trends in Recent Trends in High Pressure Research (ed. A.K. Singh), Oxford, New Delhi, pp. 779–781 (1992).Google Scholar
  2. [2]
    R. Boehler, Nature 363, pp. 534–536 (1993).ADSCrossRefGoogle Scholar
  3. [3]
    T.J. Ahrens, in High Pressure Shock Compression of Solids (eds. J.R. Asay and M. Shahinpoor), Springer-Verlag, New York, pp. 75–114 (1993).CrossRefGoogle Scholar
  4. [4]
    R. Cauble, D.W. Pillion, T.J. Hoover, N.C. Holmes, J.D. Kilkenny, and R.W. Lee, Phys. Rev. Lett. 70, pp. 2102–2105 (1993).ADSCrossRefGoogle Scholar
  5. [5]
    C.E. Ragan III, M.G. Silbert, and B.C. Divon, J. Appl. Phys. 48, pp. 2860–2870 (1977); R.F. Trunin, Phys. Usp. 37, pp. 1123–1145 (1994).ADSCrossRefGoogle Scholar
  6. [6]
    A.S. Vladimirov, N.P. Voloshin, V.A. Nagin, A.V. Petrovtsev, and V.A. Simonenko, JETP Lett. 39, pp. 82–85 (1984).ADSGoogle Scholar
  7. [7]
    O.S. Yoo, N.C. Holmes, M. Ross, D.J. Webb, and C. Puke, Phys. Rev. Lett. 70, pp. 3931–3934 (1993).ADSCrossRefGoogle Scholar
  8. [8]
    D.A. Young, J.K. Wolford, F.J. Rogers, and K.S. Holian, Phys. Lett. 108A, pp. 157–160 (1985).ADSGoogle Scholar
  9. [9]
    E. Eliezer and R.A. Ricci, High-Pressure Equations of State: Theory and Applications, North-Holland, Amsterdam, (1991).Google Scholar
  10. [10]
    B.K. Godwal, S.K. Sikka, and R. Chidambaram, Phys. Rep. 102, pp. 121–197 (1983).ADSCrossRefGoogle Scholar
  11. [11]
    A.V. Bushman and V.E. Fortov, Sov. Phys. Usp. 26, pp. 465–496 (1983).ADSCrossRefGoogle Scholar
  12. [12]
    M. Ross, Rept. Prog. Phys. 48, pp. 1–52 (1985).ADSCrossRefGoogle Scholar
  13. [13]
    J.R. Asay and G.I. Kerley, Int. J. Impact Engng. 5, pp. 69–99 (1987).CrossRefGoogle Scholar
  14. [14]
    G.I. Kerley, technical report SAND88-2291, Sandia National Laboratories, Albuquerque, NM (1991).Google Scholar
  15. [15]
    M. Ross and D.A. Young, Ann. Rev. Phys. Chem. 44, pp. 61–87 (1993).ADSCrossRefGoogle Scholar
  16. [16]
    K.S. Holian, technical report LA-10160 MS, Los Alamos National Laboratory, Los Alamos, NM (1984).Google Scholar
  17. [17]
    B.K. Godwal, S.K. Sikka, and R. Chidambaram, Phys. Rev. B20, pp. 2362–2365 (1979); Phys. Rev. Lett. 47, pp. 1144–1147 (1981).ADSGoogle Scholar
  18. [18]
    P. Hohenberg and W. Kohn, Phys. Rev. B136, pp. 864–871 (1964); W. Kohn and L.J. Sham, Phys. Rev. A140, pp. 1133–1138 (1965).MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    S.C. Gupta, J.M. Daswani, S.K. Sikka, and R. Chidambaram, Curr. Sci. (India) 65, pp. 399–406 (1993).Google Scholar
  20. [20]
    M.S. Somayazulu, S.M. Sharma, and S.K. Sikka, Phys. Rev. Lett. 73, pp. 98–101 (1994).ADSCrossRefGoogle Scholar
  21. [21]
    M. Born and K. Huang, Dynamical Theory Of Crystal Lattices, Oxford Univ. Press, London, (1954).zbMATHGoogle Scholar
  22. [22]
    S. Wei and M.Y. Chou, Phys. Rev. Lett. 69, pp. 2799–2802 (1992).ADSCrossRefGoogle Scholar
  23. [23]
    S.Yu. Savrasov, Phys. Rev. Lett. 69, pp. 2819–2822 (1992).ADSCrossRefGoogle Scholar
  24. [24]
    J.C. Slater, Introduction to Chemical Physics, McGraw-Hill, New York (1939), Chapter XIV.Google Scholar
  25. [25]
    J.S. Dugdale and D.K.C. McDonald, Phys. Rev. 89, pp. 832–834 (1953).ADSCrossRefGoogle Scholar
  26. [26]
    Y.Ya. Vashchenko and V.N. Zubarev, Sov. Phys. Solid State 5, pp. 653–655 (1963).Google Scholar
  27. [27]
    L.V. Al’tshuler, S.B. Kormer, A.A. Bakanova, and R.F. Trunin, Sov. Phys. JETP 11, pp. 573–579 (1960).Google Scholar
  28. [28]
    A.K. McMahan and M. Ross, Phys. Rev. B15, pp. 718–725 (1977).ADSGoogle Scholar
  29. [29]
    D.A. Liberman, Phys. Rev. B20, pp. 4981–4989 (1979).ADSGoogle Scholar
  30. [30]
    B.I. Bennett and D.A. Liberman, in Shock Compression of Condensed Matter—1991 (eds. S.C. Schmidt, R.D. Dick, J.W. Forbes, and D.G. Tasker), Elsevier, New York, pp. 49–52 (1992).Google Scholar
  31. [31]
    M. Ross, Phys. Rev. B21, pp. 3140–3151 (1980).ADSGoogle Scholar
  32. [32]
    G.I. Kerley, J. Chem. Phys. 73, pp. 487–494 (1980).MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    B.K. Godwal, S.K. Sikka, and R. Chidambaram, J. Phys. 29, pp. 93–101 (1987).Google Scholar
  34. [34]
    J.A. Moriarty, in High Pressure Science and Technology—1993 (eds. S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross), American Institute of Physics, NewYork, pp. 233–236 (1994).Google Scholar
  35. [35]
    R. Car and M. Parrinello, Phys. Rev. Lett. 55, pp. 2471–2474 (1985).ADSCrossRefGoogle Scholar
  36. [36]
    O. Sugino and R. Car, Phys. Rev. Lett. 74, pp. 1823–1826 (1995).ADSCrossRefGoogle Scholar
  37. [37]
    J. Meyer-ter-Vehn and W. Zittel, Phys. Rev. B37, pp. 8674–8688 (1986).ADSGoogle Scholar
  38. [38]
    S.K. Sikka and B.K. Godwal, Phys. Rev. B35, pp. 1446–1447 (1987).ADSGoogle Scholar
  39. [39]
    R.M. More, Adv. Atomic Molec. Phys. 21, pp. 305–356 (1985).CrossRefGoogle Scholar
  40. [40]
    C.A. Rouse, Prog. High Temp. Phys. Chem. 4, pp. 139–191 (1971).Google Scholar
  41. [41]
    R.G. Greene, H. Luo, and A.L. Ruoff, Phys. Rev. Lett. 73, pp. 2075–2078 (1994).ADSCrossRefGoogle Scholar
  42. [42]
    V.A. Simonenko, in Shock Compression of Condensed Matter—1991 (eds. S.C. Schmidt, R.D. Dick, J.W. Forbes, and D.G. Tasker), Elsevier, NewYork, pp. 41–47 (1992).Google Scholar
  43. [43]
    R.G. McQueen, S.P. Marsh, J.W. Taylor, J.N. Fritz, and W. Carter, in High Velocity Impact Phenomena (ed. R. Kinslow), Academic Press, New York, pp. 293–417 (1971).Google Scholar
  44. [44]
    A.R. Kutsar and V.N. German, in Proceedings of the 3rd Int. Conf. on Ti, Moscow (1976).Google Scholar
  45. [45]
    W.J. Carter, in Metall. Effects of High Strain Rate (eds. R.W. Rohde, B.M. Butcher, R. M. Holland, and C.H. Karnes), Plenum, New York, pp. 171–184 (1973).Google Scholar
  46. [46]
    J.S. Gyanchadani, S.C. Gupta, S.K. Sikka, and R. Chidambaram, High Press. Res. 4, pp. 472–474 (1990).ADSCrossRefGoogle Scholar
  47. [47]
    J.S. Gyanchandani, S.C. Gupta, S.K. Sikka, and R. Chidambaram, J. Phys. Condens. Matter 2, pp. 301–305 (1990).ADSCrossRefGoogle Scholar
  48. [48]
    J.S. Gyanchandani, S.C. Gupta, S.K. Sikka, and R. Chidambaram, J. Phys. Condens. Matter 2, pp. 6457–6459 (1990).ADSCrossRefGoogle Scholar
  49. [49]
    S.K. Sikka, Y.K. Vohra, and R. Chidambaram, Prog. Mater. Sci. 27, pp. 245–310 (1982).CrossRefGoogle Scholar
  50. [50]
    H. Xia, S.J. Duclos, A.L. Ruoff, and Y.K. Vohra, Phys. Rev. Lett. 64, pp. 204–207 (1990).ADSCrossRefGoogle Scholar
  51. [51]
    H. Xia, G. Parthsarthy, H. Luo, Y.K. Vohra, and A.L. Ruoff, Phys. Rev. B42, pp. 6736–6738 (1990).ADSGoogle Scholar
  52. [52]
    L.V. Al’tshuler, A.A. Bakanova, I.P. Dudoladov, E.A. Dynin, R.F. Trunin, and B.S. Chekin, Zh. Prikl. Mekh. Tekh. Fiz. 2, pp. 3–34 (1981).Google Scholar
  53. [53]
    G.T. Gray III, C.E. Morris, and A.C. Lawson, in Proc. 7th. Inter. Conf. on Ti, TMS, Pittsburgh (1993).Google Scholar
  54. [54]
    D.J. Pettifor, J. Phys. C3, pp. 367–377 (1970).ADSGoogle Scholar
  55. [55]
    R.S. Hixson, D.A. Boness, J.W. Shaner, and J.A. Moriarty, Phys. Rev. Lett. 62, pp. 637–640 (1989).ADSCrossRefGoogle Scholar
  56. [56]
    J.A. Moriarty, Phys. Rev. B45, pp. 2004–2014 (1992).ADSGoogle Scholar
  57. [57]
    S.K. Sikka, B.K. Godwal, and R.S. Rao, High Press. Res. 10, pp. 707–709 (1992).ADSCrossRefGoogle Scholar
  58. [58]
    P. Soderlind, R. Ahuja, O. Eriksson, B. Johansson, and J.M. Willis, Phys. Rev. B49, pp. 9365–9371 (1994).ADSGoogle Scholar
  59. [59]
    Y.K. Vohra and J. Akella, Phys. Rev. Lett. 67, pp. 3563–3566 (1991).ADSCrossRefGoogle Scholar
  60. [60]
    O. Eriksson, P. Soderlind, and J.M. Willis, Phys. Rev. B45, pp. 12588–12591 (1992).ADSGoogle Scholar
  61. [61]
    R.S. Rao, B.K. Godwal, and S.K. Sikka, Phys. Rev. B46, pp. 5780–5782 (1992).ADSGoogle Scholar
  62. [62]
    S.C. Gupta, N. Suresh, and S.K. Sikka, in High Pressure Science and Technology—1993 (eds. S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross), American Institute of Physics, New York, pp. 183–185 (1994).Google Scholar
  63. [63]
    J.A. Moriarty, D.A. Young, and M. Ross, Phys. Rev. B30, pp. 578–588 (1984).ADSGoogle Scholar
  64. [64]
    J.W. Shaner, J.M. Brown, and R.G. McQueen, in Proc. of IX AIRAPT International Conf., North-Holland, New York, p. 137 (1983).Google Scholar
  65. [65]
    B.K. Godwal, C. Meade, R. Jeanloz, A. Garcia, A.Y. Liu, and M.L. Cohen, Science 248, pp. 462–465 (1990).ADSCrossRefGoogle Scholar
  66. [66]
    D.A. Boness, J.M. Brown, and J.W. Shaner, in Shock Waves in Condensed Matter—1987 (eds. S.C. Schmidt and N.C. Holmes), Elsevier, New York, pp.115–118 (1988).Google Scholar
  67. [67]
    J.A. Moriarty and J.D. Althoff, Phys. Rev. B51, pp. 5609–5615 (1995).ADSGoogle Scholar
  68. [68]
    J.A. Moriarty and A.K. McMahan, Phys. Rev. Lett. 48, pp. 809–812 (1982).ADSCrossRefGoogle Scholar
  69. [69]
    N.W. Ashcroft and J. Lekner, Phys. Rev. 145, pp. 83–90 (1966).ADSCrossRefGoogle Scholar
  70. [70]
    S.M. Sharma and S.K. Sikka, Prog. Mater. Sci. (in press).Google Scholar
  71. [71]
    J.R. Chelikowsky, H.E. King, Jr., N. Troullier, J.L. Martins, and J. Glinnemann, Phys. Rev. Lett. 65, pp. 3309–3312 (1990).ADSCrossRefGoogle Scholar
  72. [72]
    A.Di. Pomponio and A. Continenza, Phys. Rev. B48, pp. 12558–12565 (1993).ADSGoogle Scholar
  73. [73]
    S.K. Sikka and S.M. Sharma, Current Sci. 63, pp. 317–320 (1992).Google Scholar
  74. [74]
    M.S. Somayazulu, S.M. Sharma, S.K. Sikka, N. Garg, and S.L. Chaplot, in High Pressure Science and Technology—1993 (eds. S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross), American Institute of Physics, New York, pp. 815–818 (1994).Google Scholar
  75. [75]
    D.B. McWhan, J. Appl. Phys. 38, pp. 347–352 (1967).ADSCrossRefGoogle Scholar
  76. [76]
    J. Wackerle, J. Appl. Phys. 33, pp. 922–937 (1962).ADSCrossRefGoogle Scholar
  77. [77]
    L.C. Chhabildas, in Shock Waves in Condensed Matter—1985 (ed. Y.M. Gupta), Plenum, New York, pp. 601–605 (1986).Google Scholar
  78. [78]
    J. Aidun, M.S.T. Bukowinski, and M. Ross, Phy. Rev. B29, pp. 2611–2622 (1984).ADSGoogle Scholar
  79. [79]
    R. Reiehlin, M. Ross, S. Martin, and K.A. Goettel, Phys. Rev. Lett. 56, pp. 2858–2860 (1986).ADSCrossRefGoogle Scholar
  80. [80]
    H.K. Mao, Y. Wu, R.J. Hemley, L.C. Chen, J.F. Shu, L.W. Finger, and D.E. Cox, Phys. Rev. 64, pp. 1749–1752 (1990).ADSGoogle Scholar
  81. [81]
    E. Wigner and H.B. Huntington, J. Chem. Phys. 3, pp. 764–770 (1935); D.E. Ramaker, L. Kumar, and F.E. Harris, Phys. Rev. Lett. 34, pp. 812–814 (1975).ADSCrossRefGoogle Scholar
  82. [82]
    T.W. Barbee III, A. Garcia, M.L. Cohen, and J.L. Martins, Phys. Rev. Lett. 62, pp. 1150–1153 (1989).ADSCrossRefGoogle Scholar
  83. [83]
    H. Chacham and S.G. Louie, Phys. Rev. Lett. 66, pp. 64–67 (1991).ADSCrossRefGoogle Scholar
  84. [84]
    E. Kaxiras, J. Broughton, and R.J. Hemley, Phys. Rev. Lett. 67, pp. 1138–1141 (1991).ADSCrossRefGoogle Scholar
  85. [85]
    H. Nagara and T. Nakamura, Phys. Rev. Lett. 68, pp. 2468–2471 (1992).ADSCrossRefGoogle Scholar
  86. [86]
    J. Hu, H.K. Mao, J.F. Shu, and R.J. Hemley, in High Pressure Science and Technology—1993 (eds. S.C. Schmidt, J.W. Shaner, G.A. Samara, and M. Ross), American Institute of Physics, New York, pp. 441–444 (1994); H.K. Mao and R.J. Hemley, Rev. Mod. Phys. 66, pp. 671–692 (1994).Google Scholar
  87. [87]
    R.J. Hemley and H.K. Mao, Phys. Rev. Lett. 61, pp. 857–860 (1988).ADSCrossRefGoogle Scholar
  88. [88]
    H.K. Mao and R.J. Hemley, Science 244, pp. 1462–1465 (1989).ADSGoogle Scholar
  89. [89]
    F. Birch, J. Geophys. Res. 83, pp. 1257–1266 (1978).ADSCrossRefGoogle Scholar
  90. [90]
    J.H. Rose, J.R. Smith, F. Guinea, and J. Ferrante, Phys. Rev. B29, pp. 2963–2969 (1984).ADSGoogle Scholar
  91. [91]
    W.B. Holzapfel, in Molecular Solids under Pressure (eds. R. Pucci and G. Piccitto), North-Holland, Amsterdam, pp. 61–88 (1991).Google Scholar
  92. [92]
    W.J. Nellis, J.A. Moriarty, A.C. Mitchell, M. Ross, R.G. Dandrea, N.W. Ashcroft, N.C. Holmes, and G.R. Gathers, Phys. Rev. Lett. 60, pp. 1414–1417 (1988).ADSCrossRefGoogle Scholar
  93. [93]
    S.K. Sikka, Phys. Lett. 135A, pp. 129–131 (1989).ADSGoogle Scholar
  94. [94]
    S.K. Sikka, Phys. Rev. B38, pp. 8463–8464 (1988).ADSGoogle Scholar
  95. [95]
    V.L. Moruzzi, J.F. Janak, and A.R. Williams, in Calculated Electronic Properties of Metals, Pergamon, New York, (1978).Google Scholar
  96. [96]
    N. Suresh, S.C. Gupta, and S. K. Sikka, to be published.Google Scholar
  97. [97]
    M.H. Rice, R.G. McQueen, and J.M. Walsh, Solid State Phys. 6, pp. 40–63 (1958).Google Scholar
  98. [98]
    S.K. Sikka, B.K. Godwal, and R. Chidambaram, Bull. Mater. Sci. 7, pp. 377–386 (1985).CrossRefGoogle Scholar
  99. [99]
    D.J. Steinberg, J. Phys. Chem. Solids 43, pp. 1175–1182 (1982).ADSCrossRefGoogle Scholar
  100. [100]
    R. Jeanloz and R. Grover, in Shock Waves in Condensed Matter—1987 (eds. S.C. Schmidt and N.C. Holmes), Plenum, New York, pp. 69–72 (1988).Google Scholar
  101. [101]
    A.C. Mitchell, W.J. Nellis, J.A. Moriarty, R.A. Heinie, N.C. Holmes, R.E. Tipton, and G.W. Repp, J. Appl. Phys. 69, pp. 2986–2984 (1991).ADSCrossRefGoogle Scholar
  102. [102]
    C.F. von Weizsaker, Z. Phys. 96, p. 431 (1935).ADSCrossRefGoogle Scholar
  103. [103]
    D.A. Kirzhnits, Sou. Phys. JETP 5, pp. 64–71 (1957).MathSciNetzbMATHGoogle Scholar
  104. [104]
    R.M. More, Phys. Reu. A19, pp. 1234–1246 (1979).ADSCrossRefGoogle Scholar
  105. [105]
    N.N. Kalitkin and L.V. Kuzmina, Sou. Phys. Solid State 13, pp. 1938–1942 (1972).Google Scholar
  106. [106]
    F. Perrot, Phys. Rev. A20, pp. 586–594 (1978).ADSGoogle Scholar
  107. [107]
    D.A. Kirzhnits, Yu.E. Lozovik, and G.V. Shpatakovskaya, Sov. Phys. Usp. 18, pp. 648–672 (1976).Google Scholar
  108. [108]
    W. Zink, Phys. Rev. 176, pp. 279–284 (1968).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1998

Authors and Affiliations

  • S. K. Sikka
  • B. K. Godwal
  • R. Chidambaram

There are no affiliations available

Personalised recommendations